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Abstract
Traditional AST-based code differencing tools like

ChangeDistiller struggle to scale on large codebases.
HyperAST is a framework that models versioned code
as a Directed Acyclic Graph (DAG) of Abstract Syn-
tax Trees (ASTs), with deduplication of unchanged
nodes and precomputed metadata. This approach has
demonstrated effectiveness in improving the performance
of the GumTree algorithm. However, its applicability
to algorithms with fundamentally different matching
strategies, like ChangeDistiller ’s bottom-up approach,
was unclear. We ported ChangeDistiller to Rust
and adapted it to leverage HyperAST ’s optimizations.
Experiments on 1,046 real-world code change pairs from
the Defects4J dataset demonstrate a 99.13% reduction
in total runtime (~4.5 hours to 2.3 minutes) and a
median per-file reduction of 98.97% (3149.25 to 31.55
milliseconds), all without altering the core algorithm’s
behavior. Our research demonstrates that HyperAST ’s
techniques can be applied beyond GumTree, significantly
improving ChangeDistiller ’s runtime performance.

1 Introduction
Understanding how software changes over time is funda-
mental to computer science. Developers make thousands
of modifications daily—fixing bugs, adding features,
refactoring, and optimizing performance. Tracking and
analyzing these changes is crucial for software engineering
tasks such as code review, debugging, and version control.

Traditional tools like Unix diff1 compare files line-by-
line as plain text, missing crucial structural information.
For example, moving a function appears as a complete
deletion and insertion rather than a relocation. To
address these limitations, structural differencing tools
operating on Abstract Syntax Trees (ASTs) were devel-
oped. Diff tools like ChangeDistiller [1] and GumTree [2]
operate on ASTs to preserve the syntactic structure
and facilitate a semantic understanding of code changes,
thereby enabling more accurate code analysis.

However, these structural differencing tools face a
critical scalability challenge when used to analyze entire
codebases. Their focus mainly lies on differencing
between two files, but when we want to understand more
about the evolution of codebases over time, the compu-
tational cost of comparing ASTs becomes prohibitively
expensive. Processing large codebases can take hours
or even become computationally infeasible, limiting the
practical applicability of these otherwise powerful tools.

Efforts to address these challenges have taken different
directions. Some approaches, such as pruning ASTs based
on textual diff-hunks [3], aim to improve performance
by reducing the input size. While effective, pruning
methods focus on pre-filtering rather than enhancing
the efficiency of the underlying data structures. In
contrast, Quentin et al. in HyperDiff [4] adapted GumTree

1https://www.man7.org/linux/man-
pages/man1/diff.1.html

to utilize HyperAST [5], a framework designed for
optimized AST representation and processing at scale.
By incorporating techniques such as deduplication, lazy
processing, and precomputed metadata, this adaptation
achieved substantial performance gains, demonstrating
the value of data structure optimizations for AST
differencing.

Other research has focused on improving the quality
of edit scripts generated by AST differencing tools. For
instance, tools like IJM [6], MTDiff [7], and hybrid
methods that combine AST and textual data [8] aim
to produce more concise and intuitive scripts that align
with developer intent. Hyperparameter optimization of
GumTree has also been demonstrated to be effective in
improving quality [9]. However, these efforts primarily
refine matching algorithms and output formats rather
than addressing performance.

Similarly, refactoring detection tools, such as Refac-
toringMiner [10] and Alikhanifard et al.’s approach [11],
leverage AST analysis to identify code transformations.
While improving the performance of their algorithms
to some extent, their focus remains on detecting refac-
toring types rather than optimizing AST differencing
performance at scale.

Building on these advancements, this research inves-
tigates whether HyperAST ’s innovations can be trans-
ferred to ChangeDistiller, which employs a bottom-up
matching approach distinct from GumTree’s hybrid
strategy. Specifically, we address two main research
questions: (1) Which HyperAST optimization
techniques can be effectively adapted to the
ChangeDistiller algorithm? (2) How does the
adapted ChangeDistiller’s runtime performance
compare to the original algorithm?

This paper outlines our strategy for adapting
ChangeDistiller to take advantage of HyperAST ’s
optimizations. We ported ChangeDistiller to Rust and
integrated it with the optimized data structures and
techniques from HyperAST. Our approach maintains the
core bottom-up matching strategy and coarse-grained
processing of ChangeDistiller, while achieving significant
performance improvements.

We conducted a comprehensive empirical evaluation
across 1,046 real-world code change pairs from the
Defects4J dataset [12], demonstrating substantial runtime
improvements. Our HyperAST -adapted ChangeDistiller
achieved a median speedup of 94.2× while preserving the
essential algorithmic behavior, demonstrating that Hy-
perAST ’s optimizations are effective even for algorithms
with distinct characteristics.

The remainder of this paper is structured as follows:
Section 2 provides background on AST-based differencing
and the HyperAST framework. Section 3 details
our adaptation methodology and technical innovations,
including configurable processing strategies and caching
optimizations. Section 4 presents our comprehensive
evaluation and its analysis. Section 5 concludes and
outlines future work. Finally, Section 6 addresses
responsible research aspects.
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2 Background
Structural differencing techniques operating on ASTs
enable semantically meaningful change detection by
analyzing the syntactic structure of code. These tech-
niques compute edit scripts that capture insertions,
deletions, updates, and structural moves by mapping
corresponding nodes between two ASTs–often done in
multiple phases–and generating a sequence of operations
to transform one AST into another.

Two prominent AST-based differencing tools, ChangeDis-
tiller [1] and GumTree [2], employ distinct strategies
to compute edit scripts. ChangeDistiller uses a
bottom-up matching approach inspired by Chawathe
et al.’s algorithm [13]. It begins with a leaf-matching
phase, where noncompound statement nodes are matched
using string similarity based on bi-grams and the Dice
Coefficient [14]. This is followed by an inner-node
matching phase, where subtree similarity is computed
based on previously matched children. ChangeDistiller
operates on coarse-grained ASTs, meaning that the leaves
of the ASTs represent statement level nodes as their string
representation.

In contrast, GumTree employs a hybrid strategy com-
bining top-down greedy matching, bottom-up matching
for remaining nodes, and a recovery phase. Operating
on fine-grained ASTs, GumTree produces shorter edit
scripts and detects structural moves more effectively [2].

To address the scalability challenges of differencing
large-scale software systems, frameworks like Hyper-
AST [5] have been developed. HyperAST optimizes
AST representation and processing by modeling software
history as a Directed Acyclic Graph (DAG) of ASTs.
Identical subtrees are deduplicated across versions and
within a single version, reducing memory usage and
computational overhead. Techniques such as lazy
decompression—where DAG nodes are materialized only
on demand—and precomputed node metadata further
enhance efficiency.

3 Approach
This section describes our methodological approach
to adapting ChangeDistiller to leverage HyperAST ’s
optimized data structures and presents the technical
innovations that enable improved performance while
preserving the original algorithmic approach.

3.1 Adaptation Strategy
The primary challenge in adapting ChangeDistiller
to HyperAST lies in reconciling fundamentally differ-
ent design philosophies. ChangeDistiller employs a
bottom-up matching approach on coarse-grained ASTs,
treating statement-level nodes as atomic units, whereas
HyperAST stores complete fine-grained AST structures.
Our adaptation strategy preserves ChangeDistiller ’s
original algorithmic logic while leveraging HyperAST ’s
performance optimizations.

We ported ChangeDistiller from GumTree’s Java repos-
itory2 to Rust to mitigate any differences in performance
caused by language differences. We preserved its default
hyperparameters and core two-phase algorithm: leaves
matching using Dice bi-gram string similarity, followed
by inner node matching based on subtree similarity. This
baseline implementation serves as the foundation for
evaluating our optimizations. Figure 1 illustrates the
general outline of our work.

Figure 1: General Outline of the Process of our Approach

To assess the effectiveness of different optimizations,
we implemented eight variants: two baseline configura-
tions (shallow and deep statement processing) and six
optimized configurations that combine both statement
processing approaches with caching strategies (no cache,
n-gram cache, and label cache). This design isolates the
impact of individual techniques and their interactions.

3.2 Technical Implementation
The following three elements form the core of our
implementation: a custom iterator for coarse-grained
processing on fine-grained ASTs, integration of Hyper-
AST ’s optimizations, and caching mechanisms for string
similarity calculations.
3.2.1 Coarse-Grained Statement Processing on

Fine-Grained ASTs
The original ChangeDistiller algorithm operates on
coarse-grained ASTs where “leaves in the tree are noncom-
pound statements” [1], while HyperAST stores complete
fine-grained ASTs containing fully parsed expressions.

We introduced a custom post-order iterator with
configurable leaf predicates, allowing us to specify
which nodes to treat as logical leaves. This enables
ChangeDistiller to operate at the statement level without
altering HyperAST ’s internal structure. With that, we
developed two processing approaches:

Deep Statement Processing treats the deepest non-
compound statement-level nodes as logical leaves, closely
matching ChangeDistiller ’s original definition.

Shallow Statement Processing treats statement
nodes closest to the root as logical leaves, grouping
compound statements as single units.

To illustrate these differences, consider the simple
function in Listing 1 and its AST representation in

2https://github.com/GumTreeDiff/gumtree/tree/5b939f8
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Listing 1: Simple Example Java Function corresponding to
Figure 2

1 function foo(int i) {
2 if (i < 0) {
3 return false;
4 }
5 return i + 10;
6 }

Figure 2: AST representation of Listing 1 highlighting the
logical leaf nodes of different iteration modes. Legend:
Blue fill = Fine-grained terminal nodes; Orange border =
HyperAST shallow logical leaves; Light blue fill = HyperAST
deep logical leaves; Dashed border = Coarse-grained logical
leaves. Nodes with combined styles are processed by multiple
approaches.

FunctionDecl

Name: foo Parameters

Parameter

Type: int Name: i

Body

IfStmt

Condition

BinaryExpr: <

Variable: i Literal: 0

ThenBlock

ReturnStmt

Literal: false

ReturnStmt

BinaryExpr: +

Variable: i Literal: 10

Figure 2, which demonstrates how HyperAST stores
the complete fine-grained AST structure. Our custom
iterator treats different nodes as logical leaves based on
the configured processing approach.

Fine-grained processing (blue fill) identifies all
actual terminal nodes in the AST - the atomic elements
like identifiers (Name: foo, Variable: i) and literals
(Literal: 0, Literal: false, Literal: 10) that con-
tain no child nodes. This is the default behavior of
HyperAST and is equivalent to our custom iterator with
a leaf predicate that returns true only if the node has no
children.

Our shallow statement iterator (orange border)
treats the outermost statement-level constructs as logical
leaves: the entire IfStmt compound statement and the
outer ReturnStmt. This approach prioritizes higher-level
structural units over individual statements within com-
pound blocks. This behavior is achieved by setting a
leaf predicate that returns true only if the node is of
type Statement and setting the iterator to shallow mode,
which means it will not descend into child nodes.

Our deep statement iterator (light blue fill) identi-
fies the deepest non-compound statement-level nodes as
logical leaves: both ReturnStmt nodes (return false;
and return i + 10;), but not the compound IfStmt
that contains one of them. This more closely matches the
original ChangeDistiller algorithm’s focus on individual

statement units. This behavior is achieved by setting
a leaf predicate that returns true only if the node is of
type Statement and has no descendant node of type
Statement, ie. setting the iterator to deep mode.

Iterating over a Coarse-grained AST (dashed bor-
der) yields the same leaves as a deep iterator. However,
it would iterate over ASTs where the statement nodes are
terminal nodes with string representations of the entire
statement rather than ASTs containing their fine-grained
parsed structure. We mimic this behavior by treating
statement-type nodes as logical leaves during traversal
and using their serialized string representation (a string
containing the entire statement) rather than a node’s
label for string similarity.

Custom iterators enable us to utilize HyperAST ’s data
representation without modification while maintaining
ChangeDistiller ’s coarse-grained analysis strategy. Addi-
tionally, the iterator provides traversal modes to return
all nodes (up to the logical leaves), only the logical leaf
nodes, or only the inner nodes, enabling efficient access
for leaves matching and bottom-up matching.

3.2.2 Core HyperAST Optimizations
Integration

We successfully integrated three fundamental HyperAST
optimization techniques into all of the optimized variants
of our ChangeDistiller implementation:

Optimized Data Structures HyperAST stores AST
nodes in post-order traversal within contiguous arrays,
where each node’s identifier corresponds directly to
its array index, and all descendants of a node occupy
positions from the node’s leftmost leaf descendant up to
the node itself. We adapted ChangeDistiller to leverage
this structure for efficient data retrieval and range-based
operations.

Lazy Decompression The framework implements lazy
decompression of HyperAST ’s DAG nodes, materializing
post-order arrays only on demand rather than computing
all traversals upfront. We modified ChangeDistiller ’s tree
access patterns to defer computational costs until nodes
are needed during algorithm execution.

Hash-Based Preliminary Matching HyperAST
stores precomputed label hashes as metadata for all
nodes. We integrated these hashes into ChangeDistiller ’s
matching phases as a preliminary filtering step. When
two nodes share identical label hashes, they represent
semantically equivalent subtrees and can be immediately
matched without computing expensive similarity scores.
When label hashes differ, the algorithm falls back to
the original n-gram similarity computation, ensuring no
potential matches are missed while significantly reducing
computational overhead.

Algorithm 1 presents our optimized leaves matching
phase. First, it collects all logical leaf nodes from T1 and
T2 through our custom post-order iterator. Then, for each
unmatched leaf in T1, it seeks a corresponding unmatched
leaf in T2. Line 11 shows the preliminary matching–nodes
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Algorithm 1 Optimized Leaves Matcher Phase.
Changes to the Original Highlighted in Blue.
1: L1 ← collectLeaves(T1)
2: L2 ← collectLeaves(T2)
3: for all t1 ∈ L1 do
4: if alreadyMatched(t1) then
5: continue
6: end if
7: for all t2 ∈ L2 do
8: if alreadyMatched(t2) then
9: continue

10: end if
11: if labelHash(t1) = labelHash(t2) then
12: addMapping(t1, t2)
13: continue to next t1
14: end if
15: text1← serializedText(t1)
16: text2← serializedText(t2)
17: sim← diceSimilarity(text1, text2)
18: if sim ≥ τ then
19: candidates.add(t2, sim)
20: end if
21: end for
22: if candidates not empty then
23: best← arg max(t2,sim) candidates
24: addMapping(t1, best)
25: end if
26: end for

with identical label hashes are immediately mapped,
bypassing string similarity calculations (line 17).

Algorithm 2 details the bottom-up matching phase
for inner nodes. Once leaf nodes have been matched,
the algorithm traverses all inner nodes in post-order, as
provided by our custom iterator. The main optimization
in this phase is primarily due to HyperAST ’s range-based
data structures. When evaluating the similarity between
inner nodes (line 13), the algorithm can directly access
all descendant mappings via contiguous array ranges,
thereby eliminating the need for additional tree traversal.

3.2.3 Caching Strategies
We anticipated string similarity computation to be a
major runtime bottleneck in ChangeDistiller. To try and
mitigate this, we implemented two caching strategies:
Label Caching Lazily computes and stores each
node’s serialized representation (the complete statement
text) upon first encounter during similarity calculations.
Subsequent accesses reuse the cached value, avoiding
redundant serialization.
N-gram Caching Lazily computes and stores n-gram
hash-sets during the leaves matching phase, only for nodes
requiring similarity computation. This avoids redundant
string splitting and processing across iterations.

These caching strategies are integrated at lines 15 and
16 of Algorithm 1, where they first check for cached values
before computing or serializing.

Algorithm 2 Optimized Bottom-Up Matcher Phase.
Changes to the Original Highlighted in Blue.
1: I1 ← collectInnerNodes(T1)
2: I2 ← collectInnerNodes(T2)
3: for all t1 ∈ I1 do
4: if alreadyMatched(t1) then
5: continue
6: end if
7: for all t2 ∈ I2 do
8: if alreadyMatched(t2) then
9: continue

10: end if
11: range1← t1.descendantsRange
12: range2← t2.descendantsRange
13: sim← diceSimilarity(range1, range2)
14: if sim ≥ τ then
15: addMapping(t1, t2)
16: end if
17: end for
18: end for

4 Evaluation
This section presents the empirical evaluation of our
HyperAST -adapted ChangeDistiller implementation. We
detail the experimental setup, summarize the results, and
analyze the findings to address our two primary research
questions: (1) Which HyperAST optimization techniques
can be effectively adapted to the ChangeDistiller algo-
rithm? and (2) How does the adapted ChangeDistiller ’s
runtime performance compare to the original algorithm?

4.1 Experimental Setup
We evaluated our implementation using the Defects4J
dataset3, which contains 1,046 real-world Java file pairs
from 17 open-source projects. Eight algorithm variants
were tested: two baseline configurations (shallow and
deep statement processing) and six optimized configura-
tions combining statement processing approaches with
caching strategies (no cache, n-gram cache, and label
cache). All experiments were conducted on a MacBook
Pro with an M1 Pro processor and 16GB of RAM.

To focus the runtime comparison on the matching
phases—the primary target of our optimizations—, we
excluded HyperAST parsing overhead and edit script
generation from the evaluation. Ensuring that the
reported runtime improvements accurately reflect the
impact of HyperAST ’s optimizations on the matching
process.

4.2 Results
The performance evaluation demonstrates substantial
improvements across all tested variants. Our optimized
implementations consistently outperformed their respec-
tive baselines, with runtime improvements of over 96%
compared to the baseline for all variants.

4



Table 1: Runtime performance showing total time across
1,046 file pairs and median per-file runtime, with
percentages showing reductions compared to the
baseline.

Variant Total (s) Median (ms)
Deep
Baseline 16,140.61 3,149.25
Optimized 141.04

(-99.13%)
31.55 (-98.99%)

+ Ngram 137.29
(-99.15%)

29.86 (-99.05%)

+ Label 140.36
(-99.13%)

31.01 (-99.01%)

Shallow
Baseline 2,342.95 457.14
Optimized 90.40 (-96.14%) 15.56 (-96.59%)
+ Ngram 8.78 (-99.62%) 3.76 (-99.18%)
+ Label 86.52 (-96.30%) 14.99 (-96.72%)

4.2.1 Runtime Performance
As detailed in Table 1, the optimized deep statement
variant—most comparable to the original ChangeDis-
tiller—achieved a 99.13% reduction in total runtime
(from 16,140.61 seconds to 141.04 seconds) and a 98.99%
reduction in median runtime per file (from 3,149.25ms
to 31.55ms). The shallow variant with n-gram caching
was the fastest overall, completing the dataset in 8.78
seconds total and achieving a median runtime of 3.76ms
per file. All optimized variants reduced runtime by at
least 96%, with statistically significant improvements
(Mann-Whitney U test, p < 0.01).

Figure 3 shows the runtime of each file pair for both
deep and shallow processing, along with their optimized
versions (plotted on log axes). Regression lines are
included for each variant, with R2 values indicating the
strength of the correlation between file size and runtime.
The high R2 values for the baseline variants indicate
that runtime is very strongly correlated with file size.
The more moderate R2 values for the optimized variants
suggest that the correlation is still strong, but not as
strong as for the baseline variants.
4.2.2 Speedup Ratios
Table 2 summarizes the speedup ratios of the optimized
versions compared to their respective baselines. Deep
statement processing achieved a median speedup of 94.2×,
with the middle 50% of files showing speedups between
67.9× and 143.8×. Shallow processing achieved faster
absolute runtime but more minor relative speedups, with
a median speedup of 24.4×. The shallow variant with
n-gram caching demonstrated the highest speedup ratios
overall, achieving a median speedup of 117.9× and a
maximum speedup of 218.8× for the largest files.

3https://github.com/GumTreeDiff/datasets/tree/33024da

Figure 3: Runtime of each file pair for deep and shallow
processing and their optimized versions (log axes). Regression
lines and confidence areas are shown for each variant, with
R2 values: baseline shallow = 0.96, optimized shallow = 0.59,
baseline deep = 0.94, optimized deep = 0.85.

Table 2: Speedup ratios of optimized versions and their
variants compared to their respective baselines,
showing median and quartile ranges.

Variant Median Q1 Q3
Deep 94.2× 67.9× 143.8×
Deep +
Ngram

97.7× 61.4× 146.0×

Deep +
Label

94.8× 58.6× 145.7×

Shallow 24.4× 10.1× 67.6×
Shallow +
Ngram

117.9× 61.9× 218.8×

Shallow +
Label

26.1× 10.8× 71.5×

4.2.3 Reduction in String Similarity
Computations

The median ratio of runtime contributed to string
similarity computation, a major runtime bottleneck, was
reduced from 45.3% to 2.8% for deep processing and from
89.1% to 70.5% for shallow processing. Enabling n-gram
caching further reduced similarity checks to 1.0% for deep
processing and to 6.1% for shallow processing.

Hash-based preliminary matching eliminated over
99.9% of similarity computations across all variants. For
shallow processing, similarity checks were reduced from
543,492,106 to 127,906 across the dataset, and for deep
processing, from 7,537,025,163 to 4,852,744.

All reductions in runtime ratio and similarity checks
are significant (Mann-Whitney U test, p < 0.01).
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Figure 4: Speedup ratios with regression lines and confidence
areas of optimized variants compared to their respective base-
lines showing positive scaling with AST size. Optimized with
shallow processing and n-gram caching shows a significantly
stronger scaling behavior compared to other variants, which
show a moderate scaling behavior.

4.2.4 Scaling Behavior
Figure 4 illustrates the speedup ratios across file sizes.
Linear regression analysis reveals that the shallow variant
with n-gram caching exhibits the strongest scaling
behavior, with a regression slope of 0.148 (R2 = 0.64).
This indicates a moderate-to-strong correlation between
file size and performance improvement. The regression
line slopes from 39× for the smallest files to 1,014× for
the largest files, demonstrating increasing performance
gains for larger files. All other variants exhibit consistent
but more modest scaling, with slopes around 0.033 (R2
≈ 0.18–0.20).

4.3 Analysis

The experimental results provide strong empirical ev-
idence for the effectiveness of adapting HyperAST
optimization techniques to ChangeDistiller. The fol-
lowing analysis addresses our research questions and
examines the implications of the observed performance
improvements.

4.3.1 Adaptation of HyperAST Techniques
(RQ1)

The successful integration of HyperAST optimization
techniques into ChangeDistiller highlights their broader
applicability beyond GumTree’s hybrid matching strat-
egy. Optimized data structures, hash-based preliminary
matching, and caching mechanisms were highly effective
in addressing runtime bottlenecks. However, lazy
decompression—while impactful for GumTree—likely had
a limited effect in ChangeDistiller due to its bottom-up
matching approach, as discussed in Section 4.4.

4.3.2 Runtime Performance Improvements
(RQ2)

The optimized deep statement variant achieved a 99.13%
reduction in total runtime and a 98.99% reduction in
median runtime per file, transforming ChangeDistiller
into a tool capable of efficiently analyzing large-scale
codebases. The primary driver of these improvements
was hash-based preliminary matching, which eliminated
over 99.9% of string similarity computations by leveraging
HyperAST ’s precomputed label hashes. This optimiza-
tion significantly reduced the computational overhead of
the matching phases, addressing the core bottleneck of
the original algorithm.

4.3.3 Variant-Specific Observations
Deep statement processing operates on many small
statement units, resulting in numerous comparisons.
While this increases the baseline runtime, it also makes
hash-based filtering highly effective, achieving a median
speedup of 94.2×. Shallow processing, which treats larger
compound statements as single units, reduces the number
of comparisons but increases the cost of each comparison
due to longer statement strings. This explains why
n-gram caching provides very noticeable benefits for
shallow processing, increasing the median speedup from
24.4× to 117.9× by avoiding redundant string splitting
and processing of longer strings.

4.3.4 Scalability Analysis
The shallow variant with n-gram caching not only
achieved the best overall performance for our dataset but
also exhibited the strongest scaling behavior, showing
increasing performance gains with larger files. This
variant’s ability to speed up processing by over 1,000
times for the largest files underscores its potential for effi-
ciently analyzing large-scale codebases. All other variants
displayed consistent scaling behavior with increased input
sizes. Although their gains were more modest, they still
indicate that HyperAST ’s optimizations are particularly
beneficial for larger inputs.

The R2 values for the regression lines in Figure 3
quantify how well file size predicts runtime for each
variant. The high R2 values (> 0.9) for the baseline
variants indicate a very strong relationship between
file size and runtime—larger files almost always take
proportionally longer to process. In contrast, the
optimized variants show somewhat lower R2 values (0.59
for shallow and 0.85 for deep), suggesting that while
file size remains an important factor, the optimizations
have reduced the direct dependency of runtime on
file size. This is especially notable for the optimized
shallow variant, where the lower R2 reflects more variable,
but generally much lower, runtimes across different file
sizes. This pattern indicates that the optimizations not
only reduce overall runtime but also show that specific
optimizations have a higher impact on certain types of
files.
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4.4 Limitations
While the evaluation highlights notable performance
improvements, some limitations remain. These include
differences from GumTree’s original implementation, the
focus on Java-specific datasets, and the lack of evaluation
of edit script quality. Nonetheless, the consistent
runtime reductions across all file pairs suggest that the
optimizations are widely applicable and scalable.
Internal Validity We verified the correctness of
our implementation through unit tests for individual
components and by comparing the output of the baseline
and optimized versions of ChangeDistiller. These
tests ensured that the optimizations preserved the core
behavior of the algorithm. However, we did not compare
our implementation to GumTree’s original Java-based
ChangeDistiller4, which could introduce subtle differences
in behavior due to variations in AST representation or
processing.
External Validity Our evaluation focused on Java bug
fixes from the Defects4J dataset, which may limit the
generalizability of our findings to other programming
languages or more general commits. Despite these
limitations, consistent improvements across all 1,046 file
pairs suggest the broad applicability of the optimizations.
Construct Validity The metrics used to evaluate
performance focus on runtime efficiency but do not
account for memory usage or the quality of the generated
edit scripts. While runtime improvements were the
primary goal, the impact of the optimizations on memory
usage and edit script quality remains unexplored.
Scalability Our results demonstrate strong scalability
for larger files, particularly for the shallow processing
variant with n-gram cache, which showed increasing
performance gains as file sizes grew. However, the
evaluation was limited to individual file pairs rather than
full repository histories.
Limited Impact of Lazy Decompression Lazy
decompression, a key optimization in HyperAST, likely
had minimal impact on ChangeDistiller due to its bottom-
up nature requiring all leaves. In ChangeDistiller ’s
first phase, all leaf nodes must be processed, which
inherently forces the decompression of their parent nodes
(i.e., all inner nodes), requiring full AST materialization
regardless of lazy loading. In contrast, GumTree’s
top-down phase can bypass entire subtrees when parent
nodes match, making lazy decompression a valuable
optimization in that context. This constraint presents an
opportunity for future adaptations, such as incorporating
a preliminary top-down phase to improve efficiency, as
described in Section 5.4.

5 Conclusion and Future Work
This research demonstrates that HyperAST optimization
techniques can be effectively applied beyond their original
GumTree context to distinct AST-differencing algorithms,

4https://github.com/GumTreeDiff/gumtree/tree/5b939f8

confirming both the technical feasibility and broader
applicability of these performance enhancements.

5.1 Summary of Contributions
Our investigation addressed two fundamental research
questions: (1) Which HyperAST optimization techniques
can be effectively adapted to ChangeDistiller? and
(2) How does the integration improve ChangeDistiller ’s
performance compared to the original implementation?
These questions guided our systematic approach to
evaluating the transferability and impact of HyperAST ’s
optimizations.

We made several key technical contributions. First, we
successfully ported ChangeDistiller from Java to Rust,
preserving the original algorithmic logic while leveraging
HyperAST ’s optimizations. Our approach includes a
coarse-grained statement processing system that operates
on fine-grained ASTs through custom post-order iterators,
enabling ChangeDistiller to maintain its statement-level
analysis without modifying HyperAST ’s structure.

Second, we integrated three core HyperAST optimiza-
tion techniques: optimized data structures, lazy decom-
pression, and hash-based preliminary matching. We also
implemented caching strategies, including label caching
and n-gram caching, to further enhance performance.
Finally, we conducted a systematic evaluation across eight
algorithm variants to isolate the impact of individual
optimization techniques.

5.2 Key Findings
Our empirical evaluation across 1,046 real-world code
change pairs demonstrated substantial performance
improvements. The primary optimized implementation
achieved a 99.13% reduction in total runtime (from
16,140.61s to 141.04s) and a 98.99% reduction in median
runtime per file (from 3,149.25ms to 31.55ms), with
a median speedup of 94.2×, while maintaining core
algorithmic behavior.

The systematic variant analysis showed important
characteristics: deep statement processing–using non-
compound statements as leaves–achieved superior im-
provement ratios (median 94.2× speedup), while shallow
statement processing–using the largest compounded
statements as leaves–provided better absolute runtime
performance (as low as 3.76ms median with n-gram
caching). Caching of n-grams proved highly effective
for shallow statements, providing a 4.8× additional
speedup over no caching. Hash-based preliminary
matching proved highly effective, achieving a reduction
of over 99.9% in similarity calculations for all variants.
The moderate to strong positive correlations between
AST size and performance improvement demonstrate
that our optimizations become increasingly valuable for
larger codebases, especially when combined with caching
strategies.

5.3 Broader Implications
Our results provide strong empirical evidence that Hyper-
AST ’s optimization techniques have broader applicability
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beyond their original GumTree implementation. The
successful adaptation to ChangeDistiller ’s fundamentally
different bottom-up matching approach suggests these
optimizations could benefit other AST-differencing algo-
rithms regardless of their design principles.

The substantial performance improvements make
ChangeDistiller viable for large-scale software analysis
tasks that were previously computationally prohibitive.
These advancements could enable new applications in
continuous integration, automated code review, and
software evolution studies.

Furthermore, the achieved speedups facilitate practical
integration into workflows where rapid feedback is critical.
For example, in continuous integration pipelines, our
improvements allow for near real-time structural analysis
of code changes, providing developers with immediate
insights during code review. This capability enhances
overall software development efficiency by supporting
more informed coding decisions and quicker turnaround
times.

5.4 Future Work
Our research opens several avenues for extending Hy-
perAST ’s optimization techniques to the broader AST-
differencing ecosystem.
Generalized Adaptation Framework Our method-
ology could be extended to other AST-differencing
algorithms, such as IJM [6], MTDiff [7], or Refac-
toringMiner [10], establishing a systematic framework
for applying HyperAST optimizations across diverse
matching strategies.
Preliminary Top-Down Processing Adding a pre-
liminary top-down phase to ChangeDistiller could signif-
icantly improve performance. This phase would traverse
from root to file, class, or method level, using label-hash
matching to identify unchanged structures early. By
marking entire subtrees as matched before the leaves
phase begins, we could skip processing most nodes
and focus only on subtrees containing changes. This
optimization would also enhance the effectiveness of
lazy decompression, as matched subtrees would not need
materialization.
Framework-Level Improvements Native Coarse-
Grained Storage: HyperAST could directly store
statement-level representations instead of or alongside
fine-grained ASTs, eliminating serialization overhead
during similarity computation.

Enhanced Iterator Design: Leveraging HyperAST ’s
metadata during AST construction to pre-mark statement
boundaries would enable more efficient traversal patterns
and eliminate runtime predicate evaluation.
Evaluation Extensions Future evaluations could
include cross-language validation, memory profiling to
quantify space-time trade-offs, a complete repository
history analysis rather than individual file pairs, and
formal verification of algorithmic equivalence with the
original implementation.

These directions could position HyperAST as an essen-
tial infrastructure for scalable code analysis, facilitating
new applications in real-time change impact analysis and
repository-wide software evolution studies.

6 Responsible Research
This section addresses the ethical considerations and
reproducibility aspects of our research, emphasizing
transparency and integrity and enabling independent
verification of our findings.

6.1 Ethical Considerations
This research does not involve human subjects or
sensitive personal data. All experimental data consists of
publicly available source code from open-source software
projects, which are already subject to public scrutiny
and distributed under permissive licenses. Specifically,
the Defects4J dataset used in this research is distributed
under the MIT License, and the GumTree repository is
distributed under the GNU Lesser General Public License
(LGPL) Version 3, ensuring compliance with open-source
licensing standards.

While our work focuses on technical improvements to
code differencing algorithms, we acknowledge the broader
impacts of enhanced code analysis tools. Improved
AST-differencing capabilities can contribute positively
to software engineering practices by enabling better
code review processes, more accurate change impact
analysis, and enhanced software maintenance workflows.
However, such tools could theoretically be misused for
unauthorized code analysis or raise intellectual property
concerns. To mitigate these risks, we emphasize that
our research adheres to ethical standards and aims to
advance legitimate software engineering practices while
contributing to the open-source community’s toolkit for
code analysis.

6.2 Reproducibility
Reproducibility is an important aspect of our research,
and we have made efforts to ensure that all components
necessary to verify our findings are publicly accessible:

Implementation: Our HyperAST -adapted ChangeDis-
tiller implementation, including all algorithm variants
and optimization strategies described in the paper, is
available in the code repository5.

Dataset: We used the Defects4J dataset from the
GumTree datasets repository6, which contains 1,046 real-
world Java file pairs from 17 open-source projects, as
described in our evaluation.

Baseline Implementation: Our baseline compar-
isons use the original ChangeDistiller implementation
from the GumTree Java repository7 but ported and
adapted to Rust and HyperAST without any additional
optimizations.

5https://github.com/leo-mangold/HyperAST/tree/9a1ab796
6https://github.com/GumTreeDiff/datasets/tree/33024da
7https://github.com/GumTreeDiff/gumtree/tree/5b939f8
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All benchmark configurations, experimental parame-
ters, and analysis scripts are included in the code reposi-
tory8, ensuring transparency and enabling independent
verification of our results.

6.3 Disclaimer on the usage of LLMs
This report was produced as part of the CSE3000
Research Project course at Delft University of Technology.
In accordance with the course policy on the use of Large
Language Models (LLMs), these tools were utilized to
support the research and writing process.

Specifically, LLMs were used for purposes such as
gathering information and assisting in the writing of texts.
Importantly, all content, ideas, and information
presented in this report have been written or
thoroughly verified by the author. The use of
LLMs does not absolve the author of responsibility for
the content presented. LLMs were treated strictly as a
supportive tool, complementing but not replacing critical
thinking and analysis.

LLMs were used to: (1) help with broader understand-
ing before reading papers in detail. Prompt: “Summarize
the main points of the attached paper.” (2) get feedback
on the clarity and coherence of the text. Prompt: “Give
me feedback on the clarity and coherence of the following
text.” (3) fix typos and grammatical errors. Prompt: “Fix
spelling and grammar errors in the following text.”
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