TU Delft

Scalable Structural Code Diffs

Comparing Gumtree Greedy and Gumtree Simple adapted for scaling

Ruben van Seventer
Supervisor(s): Carolin Brandt, Quentin Le Dilavrec
EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements
For the Bachelor of Computer Science and Engineering
June 22, 2025

Name of the student: Ruben van Seventer
Final project course: CSE3000 Research Project
Thesis committee: Carolin Brandt, Quentin Le Dilavrec, Jesper Cockx

An electronic version of this thesis is available at http://repository.tudelft.nl/.

Abstract

As software evolves, understanding the differences be-
tween versions of code becomes more important. While
text-based differencing is practical and widespread, it
does not capture the structure of code. AST-based dif-
ferencing solves this by using the structure of the code.
Gumtree is a well known reference implementation of
multiple structural diff heuristics. Gumtree Greedy is the
original algorithm, while Gumtree Simple is a later ver-
sion that was designed to scale better by making stronger
assumptions.

In this paper, we compare ported versions of Gumtree
Greedy, Gumtree Simple, and their lazified variants.
They were implemented in the Rust-based HyperAST
framework and tested on large-scale Java datasets. Our
results show that Gumtree Simple uses significantly fewer
CPU cycles compared to Gumtree Greedy. Due to sus-
pected bugs in the implementation, we cannot yet con-
clusively measure the benefits of lazification. However,
our implementation experience suggests that Gumtree
Simple is easier to adapt and optimize for scalability.

1 Introduction

Whether new features are introduced, bug fixes are ap-
plied or refactoring takes place, software is constantly
evolving. This makes understanding the differences be-
tween different versions of a program essential. These
differences are often expressed in terms of actions re-
quired to transform one version of the program into the
other, this sequence of actions is called the edit script.
Traditionally, edit scripts are computed with text-based
techniques. One advantage of using text-based tech-
niques is that very efficient algorithms [2] exist that guar-
antee to generate a minimal edit script, i.e., the shortest
possible sequence of actions. However, it also has down-
sides, since code is not a collection of unstructured text,
but rather structured text that adheres to syntax rules.
Text-based differencing doesn’t capture these semantics.
Moreover, it typically expresses differences using only
insert and delete actions, whereas many code changes
can be more naturally expressed when we include up-
date and move actions. Edit scripts that include these
actions are generally considered easier to interpret and
tend to better reflect the essence of the changes [5] [].
Abstract Syntax Tree (AST) based differencing cap-
tures the structure and semantics of code. One of the
most popular tools to generate edit scripts based on
ASTs is Gumtree [5]. As software projects grow, their
ASTs become larger, making scalability increasingly im-
portant. The original version of Gumtree, known as
Gumtree Greedy, was later followed by Gumtree Sim-
ple [4]. Gumtree Simple has stricter assumptions, en-

abling it to use a faster algorithm and to scale better.
Recent developments, like the HyperAST [g], a data
structure that aims to reduce redundancy by reusing
overlapping parts of ASTs, and later the Hyperdiff [9]
approach, which proposes new methods to compute dif-
ferences across multiple versions more efficiently, raise
new questions about how differencing algorithms can be
optimized further.

This paper investigates whether Gumtree Simple en-
ables additional adaptations helping with scalability
compared to Gumtree Greedy. To explore this question
we investigated the empirical performance of these algo-
rithms, using a Rust-based implementation built on the
HyperAST project. The sub-questions we have identified
to help answer the main research question are:

SRQ1. Which characteristics does Gumtree Simple have

that enable easier or more effective scalability adap-
tations than Gumtree Greedy?

In this sub-question it will be investigated in what
ways Gumtree Simple is easier to adapt, or can be
more effectively adapted to improve scaling. This
will be answered based on implementation experi-
ence and the baseline benchmarks.

SRQ2. How do Gumtree Greedy, Gumtree Simple and adap-

tations of Gumtree Simple compare at scale?

In this sub-question the different versions of
Gumtree will be empirically compared based on the
number of CPU-cycles, and runtime.

The contribution of this paper is giving a comparative
performance evaluation of Gumtree Greedy, Gumtree
Simple and adaptations of Gumtree Simple. In addi-
tion to confirming and complementing earlier findings [4],
we ported the original Gumtree Simple algorithm to the
Rust based HyperAST codebase.

The rest of the paper is structured as follows. Sec-
tion [2] motivates the use of AST-based differencing and
provides a high-level overview of the approach. In Sec-
tion [3 related work is discussed. Section [outlines the
methodology, and introduces the datasets. Section[j]lays
out the the results. Section [] discusses the results, and
the threads to validity. In section [7] we evaluate our re-
sponsible research practices. Finally, section [§]concludes
this paper.

2 DMotivating Example and Back-
ground

In this section we will first go over a motivating example,
this will explore a small example to motivate AST-based
differencing. After which we will provide relevant back-
ground information.

1 public void Foo() {
2 func();

3 print (fheltlta") ;
4

(a) Original Code Snippet

public void Foo() {
print (®Heltla") ;

1
2
3 print "world!");
4
5

func();
}

(b) Code Snippet After Modification

Figure 1: An example of how AST-based differencing captures semantic changes. Orange highlights indicate updates,
green highlights indicate insertions, and purple highlights indicate moves.

2.1 DMotivating Example

A text-based differencing tool would interpret the mod-
ifications shown in Figure [I] as one line deletion, and
two insertions (green). It will not capture the seman-
tics of the changes: that the print("hello”) statement
was capitalized (an update, shown in orange), and that
the func() call was moved (highlighted in purple) rather
than deleted and re-added. In contrast, an AST-based
differencing algorithm like Gumtree will produce a more
meaningful edit script that better reflects the intentions
of the developer (as can be seen in the example).

While AST-based differencing is more fine-grained,
it becomes computationally expensive when comparing
many versions, in for example a long commit histories.
This is where the HyperAST, along with the proposed
HyperDiff approach [9] offer significant advantages.

2.2 Background

Comparing two Abstract Syntax Trees (ASTs) to gen-
erate edit scripts addresses the downsides of text-based
differencing. A widely used tool to do this is GumtredT}
ASTs represent code as tree structures where each node
corresponds to a part of the code, and may carry some
additional metadata. Each node has a type label (e.g.
‘Body’ or ‘Call’) and optionally a value (e.g. a variable
name or literal). Additionally, nodes may store data
such as the size and depth of their subtree. Falleri et
al. proposed [5] and implemented the original version
of Gumtree, Gumtree Greedy. The pipeline for Gumtree
can be seen in Figure [2] where red arrows correspond to
mappings found in that phase and the orange box indi-
cate that nodes were mapped in a previous stage. Here
we see that finding the mappings between the two AST’s
consists of three phases:

1. Top-down phase: a top-down traversal where it
greedily matches the largest isomorphic subtrees
(i.e. subtrees that have the same structure and la-
bels) between the original and modified ASTs.

Uhttps://github.com/GumTreeDiff/gumtree/

2. Bottom-up phase: matches found in the first
phase are propagated upward to their parent nodes.

3. Recovery phase: runs every time a mapping is
found in the bottom-up phase, and uses the Tree
Edit Distance (TED) to determine if nodes should
be mapped. It ensures that no extra mappings can
be found in the descendants of mapped nodes.

The recovery phase is an important phase, in our ex-
ample it was responsible for 6 out of the 10 mappings.
Greedy uses a variant of the Tree Edit Distance (TED)
algorithm [I1], which computes the sequence of oper-
ations with a minimum-cost required to transform one
tree into another. This algorithm has a third order poly-
nomial complexity relative to the number of nodes in
both trees and thus doesn’t scale very well. In an effort
to make Gumtree scale better Gumtree Simple [4] was
proposed. It replaces the TED with a faster algorithm
which has a second order polynomial complexity relative
to the number of nodes in both trees.

Le Dilavrec et al. introduced the HyperAST [8], a data
structure designed to reduce redundancy by reusing over-
lapping parts of ASTs. Instead of storing all the ASTs
for different versions of a project separately, a Directed
Acyclic Graph (DAG) is constructed that reuses dupli-
cated nodes. The HyperAST is particularly effective for
history-aware analysis, such as tracking the evolution of
a code block over time. In the HyperAST part of Figure[3]
(the rest of the figure will be discussed in Section
a simplified visualization of such a DAG is shown. The
AST build from the “before” code snippet is shown in
black. When the AST build from the “after” snippet is
added, many nodes are reused, while the new or modified
nodes (highlighted in green) are appended. This clearly
shows the append only nature of the data structure, be-
cause of this fact many intermediate calculations, like
hashes and other metadata can also be reused. This ex-
plains why the HyperAST is so effective for history aware
analysis; code needs to be followed through multiple ver-
sions of a program, which means we need to look at a
lot of ASTs. Furthermore, commits often have small in-

https://github.com/GumTreeDiff/gumtree/

before.java after.java

N e

parser

mapper

compute actions

bottom-up top-down

recovery

Figure 2: Workflow of the Gumtree algorithm on the code in Figure The left shows the parsed ASTs and the
resulting edit actions. The right shows the three mapping phases. Red arrows indicate mappings found in that phase,

while previously matched nodes are in an orange box.

cremental changes, meaning that a lot of the AST stays
unchanged. With the HyperAST all of these versions
are represented in one graph, where unchanged parts are
stored only once.

Both the lazified and non-lazified versions of Gumdtree
Greedy and Gumtree Simple have hyper-parameters
that influence their matchings. The Gumtree Greedy
implementations are configured with two parameters:
“Size Threshold” and “Similarity Threshold”. The “Size
Threshold” defines the maximum size of a sub-tree that
will be used in the (expensive) recovery phase. The “Sim-
ilarity Threshold” dictates the minimum similarity re-
quired for two nodes to be considered a match. The
Gumtree Simple implementations rely on a single hyper-
parameter, the “Similarity Threshold”, which serves the
same purpose as in the Gumiree Greedy implementa-
tions. Martinez et al. [10] discussed how to optimize
these parameters, but this is outside the scope of this

paper.

3 Related Work

Gumtree [5] pioneered AST-based code differencing. It
has been used as a base for more advanced tools like
RefactorMiner [14, 13], a tool that can detect refactor-
ings between two versions of a program. It was later
improved by Alikhanifard et al. [I], who improved per-

formance and mapping accuracy, among other things.

The original Gumtree algorithm, Gumitree Greedy,
does not scale well for large trees. Gumtree Simple [4]
was proposed as a faster alternative, it replaces the ex-
pensive recovery-phase with a more eflicient strategy. In
both algorithms the hyperparameter(s) have a big im-
pact on the performance, Martinez et al. [I0] studied
how they can be optimized.

ChangeDistiller [6] is another AST-based differencing
tool that focuses on Java and uses a custom set of heuris-
tics. ChangeDistiller works on a coarse-grained AST
where leaf nodes are code statements. Gumtree Greedy
was compared to ChangeDistiller in its original paper,
and was found to both produce more mappings and more
concise edit scripts.

To improve scalability across large commit histories,
Le Dilavrec et al. introduced the HyperAST [§], a DAG-
based structure that stores multiple ASTs efficiently by
reusing unchanged nodes. The Gumtree Greedy heuristic
was optimized using the Hyper AST in HyperDiff [9].

Our work builds on these approaches by benchmark-
ing lazy and non-lazy versions of both Gumtree Greedy
and Gumtree Simple within the HyperAST framework.
We focus on evaluating the trade-offs in runtime and ac-
curacy across these combinations.

4 Methodology

In this section we discuss our methodology. We first ex-
plain the recovery phase of the Simple heuristic. Then we
talk about lazification and how we ported the Gumtree
Simple algorithm from the Java based Gumtree tool to
the Rust based HyperAST repository. After which we
introduce the datasets used in our benchmarks, and we
end by explaining our evaluation protocol.

4.1 Recovery phase in Gumtree Simple

As shortly stated in Section [2:2] the recovery phase is
where the Simple heuristic truly distinguishes it self from
the Greedy heuristic. It brings the asymptotic complex-
ity from the whole pipeline down from cubic to quadratic.
It accomplishes this speedup by sacrificing general opti-
mality, it is still optimal but only under some assump-
tions which often do not hold the real-world. The two
main assumptions are: unique subtree labels, meaning
no two subtrees in the same tree share the same label,
and unambiguous matchings, meaning each node in one
tree can be mapped to at most one node in the other.
Switching to this faster recovery phase enables us to re-
move the “Size Threshold” that was introduced in the
Greedy heuristic to limit the size of the trees explored in
the recovery phase.

Falleri et al. [4] describe the recovery phase of the Sim-
ple heuristic as consisting of three sub-phases. Remem-
ber that the recovery phase gets called every time a map-
ping is found in the bottom-up phase, meaning we always
have two ‘parent’ nodes that were just mapped.

1. Exact Isomorphism: The first phase searches the
unmatched children of the nodes that were just
mapped, for subtrees that are identical both struc-
turally and label-wise. If these matched subtrees
belong to the longest common subsequence and con-
sist only of unmapped nodes, they are added to the
mapping. This step is very similar to the top-down
phase.

2. Structural Isomorphism: If no matches are
found, we search for structural isomorphic subtrees
instead. This is done by ignoring the labels of leaf
nodes. Because subtrees where only the identifier
(e.g. the visibility of a function) was changed now
will also be considered isomorphic. This sub-phase
proves to be especially useful to detect update ac-
tions.

3. Type Matching: As a last resort, type-based
matching is attempted. This step is inspired by the
XYDiff algorithm [3], and searches for node types
that appear only once among the children of both

recently matched nodes. If such unique type ex-
ist, then the corresponding nodes will be mapped.
Unlike in earlier steps, this step can not guarantee
isomorphism on these subtrees. Therefore, the re-
covery phase is recursively applied on these newly
mapped nodes.

4.2 Lazification

In order to fairly benchmark and compare the different
algorithms, we made sure they are all implemented in one
common codebase. This was done by porting the orig-
inal Gumtree Simple implementation from the Gumtree
repositoryEI to a fork of the HyperAST repositoryﬂ This
port served as a baseline and does not include any Hy-
perAST specific optimizations. To optimize the Simple
heuristic we followed the HyperDiff [9] approach, and laz-
ified the algorithm. This means that nodes are not de-
compressed until strictly necessary, avoiding necessary
computation. For example, if both the “before” and “af-
ter” ASTs contain a subtree with the same hash, then
the subtrees can be matched without fully decompress-
ing them. Likewise, if two nodes differ significantly,
we won’t try to match them, thus their subtrees can
stay compressed. Leaving subtrees compressed speeds
up the mapping process, but when calculating the ac-
tions some of the still compressed subtrees will still be
decompressed.

In Figure [3 the difference between the original and
lazy version is visible. Although our toy example does
not have big subtrees that will stay compressed the prin-
ciple stays the same. In the figure the mappings found
during the top-down phase are represented with solid red
arrows, the mappings found during the bottom-up phase
with dashed blue arrows, and the mappings found dur-
ing the recovery phase are represented with dotted green
arrows.

During implementation we were able to reuse large
parts of code already present in the HyperAST reposi-
tory for the Greedy and lazified Greedy heuristic. The
top-down phase is the same for both Greedy and Simple,
and thus we were able to reuse both the normal and lazy
version of this. Furthermore, since the top-down phase
uses isomorphism, we were able to reuse this logic for the
Simple recovery phase.

Since optimization should not alter an algorithm, we
ensure that the output of the lazified algorithm is the
same as the output of the original version. Our full im-
plementation, including both the ported Simple heuristic
and the lazified version, is available on GitHuHﬂ

2See footnote 1
Shttps://github.com/LeaderSupreme/HyperAST
4See footnode 3

https://github.com/LeaderSupreme/HyperAST

N——
Content of the HyperAST
before.java
T
\ >
o
@
—
/ Z
w2
, —
after.java
N———

Figure 3: Comparing the workflow of original vs lazy algorithms.

4.3 Dataset

The dataset we used to compare the different heuris-
tics and their implementations is publicly available on
GitHubEl It consists of a collection of preprocessed diffs,
and is divided into two subsets:

e GitHub Java: contains the changed files of 1000
commits from 10 popular, well maintained Java
projects on GitHub.

o Defects4J: is derived from the Dcfccts4JE| [7, 12]
repository and contains bug fixes from different big
Java projects.

All the datasets are divided into two directories, before
and after, in which we can find files before and after
modification, respectively. Both these directories are or-
ganized by project and commit. Both datasets only con-
tain files that were changed in a commit. This dataset is
well-suited for our experiments for several reasons. First,
it is a subset of the dataset that was used in prior work,
including during the benchmarking of the Gumtree Sim-
ple [4] algorithm, making our results easily comparable.
Second, we did not create this dataset ourselves, this re-
duces the risk of selection bias. Additionally, the clear
structure makes it easy to work with.

4.4 Benchmarking tools

To assess the performance of the Gumtree Simple and
Lazified Gumtree Simple implementations we measure
their performance on our benchmark, and compare them
to the results of the Gumitree Greedy and the Lazy
Gumtree Greedy implementation already present in the

Shttps://github.com/GunTreeDiff/datasets
Shttps://github.com/rjust/defects4]

HyperAST codebase. Two well known tools are used to
construct the benchmark:

° Criterion.rﬂ A statistics-driven benchmarking li-
brary for Rust. It provides detailed insights in run-
times, including confidence intervals and outliers.

. Criterion—perf—eventﬂ A plug-in for Criterion
that uses perfcn‘[ﬂ to measure low-level metrics like
CPU-cycles.

4.5 FEvaluation Protocol

The benchmark is designed to compare the performance
of both the lazy and non-lazy versions of Gumtree Greedy
and Gumtree Simple. For every project in the sub-
datasets, the top-down phase is executed twice, once
using the lazy version and once using the non-lazy ver-
sion. Then, the bottom-up phase is run with all four
versions on every commit, thus we only measure phase
two (bottom-up) and three (recovery) of the total pro-
cess. Both the number of CPU-cycles and the runtime
where benchmarked. The number of CPU-cycles reflect
the computational resources needed to compute the map-
pings, while the runtime is used to get a more intuitive
comparison. During all benchmarks the number of map-
pings are recorded. The number of mappings is often
used as a proxy for the quality of the diff, if there are
more mappings found typically a more fine-grained diff
can be made. Criterion was set to take 15 samples per
benchmark. For each version, it reported a 95% con-
fidence interval around the mean CPU-cycles. We ob-
served that the median runtime always fell within this
CIL

"https://github.com/bheisler/criterion.rs
8https://crates.io/crates/criterion-perf-events
9https://crates.io/crates/perfcnt

https://github.com/GumTreeDiff/datasets
https://github.com/rjust/defects4j
https://github.com/bheisler/criterion.rs
https://crates.io/crates/criterion-perf-events
https://crates.io/crates/perfcnt

For most hyper-parameters the default values were
used. Specifically, the “Similarity Threshold” was set at
0.5 for both Greedy and Simple. We used two values for
the “Size Threshold” parameter from Greedy, 1000 (the
default suggested in the original paper) and 200. From
now on when it is relevant to specify which Size thresh-
old was used Greedy-1000 and Greedy-200 will be used
to distinguish them. We have included Greedy-200 so
we can compare the results of using the optimal recov-
ery phase on only smaller subtrees.

5 Results

In this section the results from the benchmarks are pre-
sented. All benchmarks were run on the following hard-
ware: Intel@©) Core™ i5-8250U CPU @ 1.60GHz x 4;
16GiB RAM; 264 GB Hard Drive running Linuz Mint
22.1 Cinnamon (Cinnamon version 6.4.8, and Linux
Kernel version 6.8.0-59-generic). We will first look at
how the six variants (greedy-1000, greedy-200, simple,
lazy greedy-1000, lazy greedy-200 and lazy simple) com-
pare at scale. We do this based on the empirical measure-
ments of the CPU cycles, and the number of mappings
each version found. The raw data for both the number
of mappings and the CPU-cycles can be found in [C] Ta-
ble [[] can be used to get a feeling for the results. Below
the results will be discussed further.

Table 1: Comparison of total mappings found and aver-
age CPU-cycles spent relative to the (non-lazy) Greedy
heuristic, using the default 1000 as the max size thresh-
old.

GitHub Java Defects4J

2 Greedy-200 -0.472 -0.183

= .2 Simple -0.317 0.772
S ;& Lazy Greedy-200 -0.470 -0.183
£ Lazy Simple -0.517 0.726

3 Greedy-200 -95.633 -96.828
% Simple -99.900 -99.732
= Lazy Greedy-1000 0.282 3.348
% Lazy Greedy-200 -95.526 -96.682
Lazy Simple -99.779 -99.510

5.1 Mappings In the upper part of Table [I] the rela-
tive change of total mappings compared to Greedy-1000
can be observed, lazy Greedy-1000 has been left out as
it produced the same number of mappings as the non-
lazy version. We see that all four versions shown in the
table find fewer mappings than Gumtree-1000 when run
on the GitHub Java dataset. On the Defects4J dataset
Greedy-200 and its lazy variant also find fewer mappings
than Greedy-1000, but Simple and its lazy counterpart

find more mappings than Greedy-1000. That Greedy-
200 never finds more mappings than Greedy-1000 is ex-
pected, it searches for mappings with the same algorithm
but performs the recovery phase on a subset of subtrees
that Greedy-1000 does. Why Simple performed worse
on the GitHub Java dataset, but better on the Defects4.J
dataset is less obvious. A likely explanation is that the
GitHub Java contains arbitrary changes, where the De-
fects4J only contains small localized bug patches. We
see however that the differences are small, none of the
relative differences are more than one percent off from
the number of mappings Greedy-1000 found. Something
that is interesting to notice is that the number of map-
pings of Greedy-1000 and lazy Greedy-1000 stays the
same, this is expected as explained in Section [.2] but
the number of mappings found by both Greedy-200 and
Simple change when we apply the lazified version of that
algorithm. This is something that will be addressed in
Section [6.2.1I

5.2 CPU-cycles In the lower part of Table [I] the rel-
ative change of CPU-cycles spent compared to Greedy-
1000 can be observed. Among the non-lazy variants we
see that both Greedy-200 and Simple use significantly
fewer CPU-cycles then Greedy-1000. This trend contin-
ues when we move to the lazified variants, lazy Greedy-
200 and lazy Simple use significantly less CPU-cycles
compared to lazy Greedy-1000. However, when we com-
pare the lazy and non-lazy variants an surprising result
emerges. All the lazy variants used on average more
CPU-cycles than their lazy counterpart.

5.8 Runtime In Figure [4] the runtime in milliseconds
is plotted against the absolute change in the number of
nodes of a project. Both axis are in log-scale. The plot
is missing the line of Greedy-1000, but reflects what we
expected to see from Table The results of the lazy
variants are close to their normal variants, the trend lazy
Greedy-200 of is almost on top of the one from Greedy-
200.

6 Discussion

In this section we will reflect on the results we have found
earlier and revisit the sub-questions posted in the intro-
duction. After which we will address the threads to va-
lidity.

6.1 Research Questions

6.1.1 How do Gumtree Greedy, Gumtree Simple and
adaptations of Gumiree Simple compare at scale? As
seen in section [f] there are significant differences between
the different variants. Across the datasets we saw that
Simple uses approximately 99% fewer CPU-cycles than
Greedy-1000. This trend continued when we compare

® Greedy_200
Simple %0 -
® Lazy Greedy_1000 T -7
® Lazy Greedy_200 Y e __X---%7

4 ® LazySimple ® e
X Dataset: gh-java ‘_,,——8”5 °®
O Dataset: defects4j ~
-= Trend Line b

-
=

-
-

10°

10—1_E s

10724

Number of Changed Nodes (log scale)

Figure 4: Comparison of median runtime (ms) and num-
ber of new nodes (absolute difference between nodes in
the buggy files and fixed files).

Lazy Simple with Lazy Greedy, where we see that Lazy
Simple also uses 99% fewer CPU-cycles. The same re-
sults are reflected in the runtime of the algorithms. We
did not get exactly the results we expected, that Sim-
ple is so much faster than Greedy aligns with the results
found by Falleri et al. [4]. However, that the lazy vari-
ants are often slower than their non-lazy counterparts is
in stark contrast with the results found by Le Dilavrec
et al.[9]. Nevertheless, we in the results that the “Max
Size” threshold has a big impact on the CPU-cycles for
the Greedy variant. This means that when choosing a
heuristic there is a trade-off. Do you want the strong
optimality guarantees Greedy offers, and if so, where do
you put the “Max size” threshold?

6.1.2 Which characteristics does Gumtree Simple have
that enable easier or more effective scalability adapta-
tions than Gumtree Greedy? The difference between
Greedy and Simple lies in the recovery phase, here lies
also the reason Simple can be easier adapted and opti-
mized. In the recovery phase Greedy uses a complex gen-
erally optimal tree differencing algorithm, which while
giving a lot of guarantees is also computationally ex-
pensive and hard to reason about. In contrast, Simple
uses a recovery phase with three clear sub-phases. This
structure makes it easy to reason about, and it can be
optimized in parts.

6.2 Threats to Validity

6.2.1 Internal Validity We observed that the number of
mappings produced by Greedy-200 and Simple are not
always equal to their lazy counterpart. In theory these
should be the same, as stated earlier in Section £.2] Al-
though the differences were often small, it suggests that
there is a bug in the code. Furthermore, the results of

lazy Greedy and Greedy don’t resemble the results Le
Dilavrec et al. [9] found, this suggests that there are
shortcomings in the benchmarking setup. Due to time
constraints we were not able to figure out what the cause
was of these discrepancies, and thus it is left as future
work.

All benchmarks were executed using the Criterion.rs
benchmarking framework. Although benchmarks were
run on a single machine, and we allowed Criterion to
collect sufficient samples to reduce noise, but background
processes or noise may still have caused variability in
timing measurements.

6.2.2 External Validity Our use of an established
dataset that has been used in the evaluation of the:
Gumtree Simple [4], HyperAST [8], and HyperDiff [9]
algorithms supports our external validity. It improves
the comparability of our findings with prior work. How-
ever, the dataset only includes Java and Python code
and focuses on specific types of commits and reposito-
ries. Therefore, our results may not generalize to other
programming languages and codebases.

Additionally, our experiments were performed on se-
lected commits and project samples. Although they are
representative of a real-world development history, fur-
ther experiments on larger datasets could make our con-
clusion more generalizable.

7 Responsible Research

The context of our work is tree differencing. We did not
interact with sensitive data and our work do not have
direct criminal or harmful applications. However, there
are still a lot of things to consider. We find Reproducibil-
ity and Transparency very important in research. Our
benchmarks were designed to be reproducible: we used
publicly available tools, and both our datasets and code
are publicly accessible. Additionally, we clearly docu-
mented the benchmarking setup and methodology to en-
sure others can reproduce or build up on our results.
While our research investigated performance gains and
adaptability, it was closely correlated with Sustainable
computing practices. By leveraging the HyperAST and
lazifying the algorithm, we reduce unnecessary computa-
tions and memory overhead. This significantly reduces
computational resources when applied at scale. The
dataset used in this research consists of publicly avail-
able open-source code and complies with the respective
licenses of the included projects.

8 Conclusions and Future Work

In this paper, we compared the performance and adapt-
ability of two AST differencing algorithms: Gumtree

Greedy and Gumtree Simple. We extended the Hy-
perAST repository with lazified variants of both algo-
rithms and evaluated their performance on large-scale
Java datasets.

Our results show that Gumtree Simple uses signifi-
cantly less CPU-cycles than Gumtree Greedy, making it
better suited for calculating diffs on large code bases.
However, we encountered an unexpected result when
comparing the lazy variants to their non-lazy variants,
where lazy variants would use more CPU-cycles than
their non-lazy counterparts. Nevertheless, our imple-
mentation experience suggests that Gumtree Simple has
a structure that makes it easier to adapt for scaling.

For future work, the implementation of both the stan-
dard and lazy versions of Simple should be checked for
correctness. Once validated, the benchmark can be run
again for more reliable results, and possibly reproducing
the results of the HyperDiff paper [9]. Researchers fa-
miliar with the HyperAST codebase, and experienced in
optimizing rust code, could look to further optimize the
lazy Simple implementation.

Acknowledgments

I would like to thank my peers Elias Hoste, Leo Mangold,
Maciej Mejer, and Alexander Nitters for their insightful
discussions and helpful feedback throughout the project.
I also want to thank my supervisor Quentin Le Dilavrec
and responsible professor Carolin Brandt for their guid-
ance and feedback.

References

[1] Pouria Alikhanifard and Nikolaos Tsantalis. A
Novel Refactoring and Semantic Aware Abstract
Syntax Tree Differencing Tool and a Benchmark for
Evaluating the Accuracy of Diff Tools. ACM Trans.
Softw. Eng. Methodol., 34(2):40:1-40:63, January
2025.

[2] Sudarshan S. Chawathe, Anand Rajaraman, Hec-
tor Garcia-Molina, and Jennifer Widom. Change

detection in hierarchically structured information.
SIGMOD Rec., 25(2):493-504, June 1996.

[3] G. Cobena, S. Abiteboul, and A. Marian. Detecting
changes in XML documents. In Proceedings 18th In-
ternational Conference on Data Engineering, pages
41-52, February 2002. ISSN: 1063-6382.

[4] Jean-Remy Falleri and Matias Martinez. Fine-
grained, accurate and scalable source differencing.
In Proceedings of the IEEE/ACM J6th Interna-
tional Conference on Software Engineering, ICSE

[5]

[6]

7]

18]

19]

[10]

[11]

[12]

24, pages 1-12, New York, NY, USA, April 2024.
Association for Computing Machinery.

Jean-Rémy Falleri, Floréal Morandat, Xavier Blanc,
Matias Martinez, and Martin Monperrus. Fine-
grained and accurate source code differencing. In
Proceedings of the 29th ACM/IEEFE International
Conference on Automated Software FEngineering,
ASE ’14, pages 313-324, New York, NY, USA,
September 2014. Association for Computing Ma-
chinery.

Beat Fluri, Michael Wursch, Martin PInzger, and
Harald Gall. Change Distilling:Tree Differenc-
ing for Fine-Grained Source Code Change Extrac-

tion. IEEE Transactions on Software Engineering,
33(11):725-743, November 2007.

René Just, Darioush Jalali, and Michael D. Ernst.
DefectsdJ: a database of existing faults to enable
controlled testing studies for Java programs. In Pro-
ceedings of the 2014 International Symposium on
Software Testing and Analysis, ISSTA 2014, pages
437-440, New York, NY, USA, July 2014. Associa-
tion for Computing Machinery.

Quentin Le Dilavrec, Djamel Eddine Khelladi, Ar-
naud Blouin, and Jean-Marc Jézéquel. HyperAST:
Enabling Efficient Analysis of Software Histories at
Scale. In Proceedings of the 37th IEEE/ACM Inter-
national Conference on Automated Software Engi-
neering, ASE 22, pages 1-12, New York, NY, USA,
January 2023. Association for Computing Machin-
ery.

Quentin Le Dilavrec, Djamel Eddine Khelladi, Ar-
naud Blouin, and Jean-Marc Jézéquel. HyperDiff:
Computing Source Code Diffs at Scale. In Proceed-
ings of the 31st ACM Joint European Software En-
gineering Conference and Symposium on the Foun-
dations of Software Engineering, ESEC/FSE 2023,
pages 288-299, New York, NY, USA, November
2023. Association for Computing Machinery.

Matias Martinez, Jean-Rémy Falleri, and Mar-
tin Monperrus. Hyperparameter Optimization for
AST Differencing. IEFEE Transactions on Soft-
ware Engineering, 49(10):4814-4828, October 2023.
arXiv:2011.10268 [cs].

Stefan Schwarz, Mateusz Pawlik, and Nikolaus Aug-
sten. A New Perspective on the Tree Edit Distance.
In Similarity Search and Applications, pages 156—
170. Springer, Cham, 2017. ISSN: 1611-3349.

Victor Sobreira, Thomas Durieux, Fernanda
Madeiral, Martin Monperrus, and Marcelo A. Maia.
Dissection of a bug dataset: Anatomy of 395 patches
from defectsdj. In Proceedings of SANER, 2018.

[13] Nikolaos Tsantalis, Ameya Ketkar, and Danny Dig.
RefactoringMiner 2.0. IEEE Transactions on Soft-
ware Engineering, 48(3):930-950, March 2022.

[14] Nikolaos Tsantalis, Matin Mansouri, Laleh M.
Eshkevari, Davood Mazinanian, and Danny Dig.
Accurate and efficient refactoring detection in com-
mit history. In Proceedings of the 40th Interna-
tional Conference on Software Engineering, pages
483-494, Gothenburg Sweden, May 2018. ACM.

A Reproducibility

The benchmarks and implementation of the heuris-
tics can be found in our fork of HyperAST at
https://github.com/LeaderSupreme/HyperAST

(also linked in footnode 3). The implementa-
tion of the bottom-up matchers can be found in
crates/hyper_diff/src/matchers/heuristic/gt,
where the “simple bottom up matcher.rs” and
“lazy simple bottom up matcher.rs” files con-
tain the Simple and lazy Simple heuristic re-

spectively. The benchmarks can be found
in benchmark_diffs/benches. To run the
benchmark measuring CPU-cycles checkout

https://github.com/HyperAST/HyperAST/commit/
a283fb7£2b52f0ecbfd62feb5e313de7a3fb6be05,

if you instead want to run the bench-
mark measuring runtime checkout https:
//github.com/HyperAST/HyperAST/commit/

70157242a6c¢c767a51229abfcc68daa8el566de7cl In

both cases the benchmark is in the “bench final.rs”
file, and can be ran using: cargo bench -bench
bench_final.

B Use of LLMs

I have used a LLM in the process of writing this paper.
It was used as a tool, and not to replace critical thinking.
I used it for creating the latex skeleton of some figures
and tables, including Figure [T and Table[I] I also asked
it to pe

Prompts to the LLM were:

e "I have 2 pictures I want to display in my latex
file which is two columned. The pictures should be
shown next to each other and span both columns.
I want them to have their own caption, and one
big caption for the whole figure. The latex file is a
research paper."

e "can you write a sekeleton for a small table for me?
it want have two columns x and y, and have 4 rows,
a middle stripe, and then again 4 rows. It is like
a matrix, I want along the axis of the rows both

sections to have their own name. this name should
be vertical and be next to the row names, this name
should also have wrap back when the text overlaps."

e "Can you peer review <(partial) section> for me.
Make sure everything is correct, the sentences are
well formed and there are no spelling mistakes."

C Tables

https://github.com/LeaderSupreme/HyperAST
https://github.com/HyperAST/HyperAST/commit/a283fb7f2b52f0ecbfd62fe5e313de7a3fb6be05
https://github.com/HyperAST/HyperAST/commit/a283fb7f2b52f0ecbfd62fe5e313de7a3fb6be05
https://github.com/HyperAST/HyperAST/commit/70157242a6c767a51229abfcc68daa8e1566de7c
https://github.com/HyperAST/HyperAST/commit/70157242a6c767a51229abfcc68daa8e1566de7c
https://github.com/HyperAST/HyperAST/commit/70157242a6c767a51229abfcc68daa8e1566de7c

(a) GitHub Java Dataset

Project Source Nodes Target Nodes Top Down Greedy 1000 Lazy Greedy 1000 Greedy 200 Lazy Greedy 200 Simple Lazy Simple
apache-commons-cli 178545 185073 130490 133699 133699 132903 132903 132418 132242
drool 141149 152709 104362 107808 107808 106886 106888 107224 106884
elastic-search 183481 193944 146815 150552 150552 149585 149585 149892 149620
google-guava 253863 260088 203353 204303 204303 204152 204152 204876 204735
h2 694494 706893 571415 573892 573892 573090 573090 574998 574814
jabref 555839 590774 469080 470228 470228 470007 470007 470172 470092
killbill 135830 143245 103889 109305 109305 108104 108110 108550 107850
ok-http 560558 572878 454230 457150 457150 456456 456456 456977 456757
signal-server 187088 197284 149397 153401 153402 152576 152576 152626 151980
Zaproxy 297304 310678 233423 239208 239208 237822 237848 238121 237753

(b) Defects4J Dataset

Project Source Nodes Target Nodes Top Down Greedy 1000 Lazy Greedy 1000 Greedy 200 Lazy Greedy 200 Simple Lazy Simple
Chart 326328 329149 261660 262527 262527 262396 262396 264557 264518
Cli 157170 159436 120862 122409 122409 121903 121905 123776 123707
Closure 2459361 2475749 1963406 1972313 1972313 1970483 1970499 1981949 1981341
Codec 139530 141474 110492 111252 111252 110926 110926 111970 111925
Collections 42339 42815 33821 33932 33932 33908 33908 34153 34153
Compress 338963 342214 264550 265873 265873 265674 265674 268024 267917
Csv 83576 84002 65690 66044 66044 65950 65950 66715 66703
Gson 159699 161913 122275 122811 122811 122719 122719 123399 123386
JacksonCore 619320 622549 485404 486361 486361 486226 486226 488791 488737
JacksonDatabind 1086790 1104660 856823 862592 862592 861119 861119 870579 869753
JacksonXml 38174 39887 29369 29504 29504 29479 29479 30061 30019
Jsoup 996501 1004463 809064 813207 813207 812268 812268 818838 817409
JxPath 157274 160403 123266 124301 124301 123917 123917 124307 124269
Lang 722814 728466 559120 560815 560815 560383 560383 567604 567522
Math 913932 920430 716363 720552 720552 719308 719308 725717 725499
Mockito 76337 79779 57880 59508 59508 58999 58999 59624 59593
Time 284806 288258 223639 224564 224564 224369 224369 226828 226800

Table 2: Number of mappings found in total. The 1000 and 200 in the Greedy 1000 and Greedy 200 refer the the
“Max Size” threshold used.

10

(a) GitHub Java Dataset
Project Greedy 1000 Greedy 200 Simple Lazy Greedy 1000 Lazy Greedy 200 Lazy Simple

apache 266.11 9.98 0.33 266.32 10.15 0.61
drool 541.75 29.67 0.29 541.94 30.05 0.54
elastic 1401.96 22.76 0.38 1402.30 23.34 0.72
google 239.88 22.79 0.33 240.04 23.02 0.75
h2 619.24 24.40 1.28 620.03 25.13 2.55
jabref 232.27 8.92 0.49 232.73 9.40 1.45
killbill 578.64 28.71 0.31 578.63 29.63 0.56
ok 823.32 21.26 0.71 823.92 21.77 1.66
signal 624.55 26.61 0.33 638.30 26.81 0.64
Zaproxy 1648.25 61.58 0.78 1648.57 65.15 1.33

(b) Defects4J Dataset

Project Greedy 1000 Greedy 200 Simple Lazy Greedy 1000 Lazy Greedy 200 Lazy Simple
Chart 189.40 7.35 0.82 189.77 7.70 1.43
Cli 287.08 10.08 0.34 287.26 10.85 0.62
Closure 1636.14 71.65 6.25 1639.04 75.55 10.81
Codec 314.19 4.32 0.28 314.36 4.47 0.55
Collections 13.31 0.81 0.08 20.55 0.85 0.15
Compress 355.71 5.34 0.66 356.12 5.70 1.28
Csv 159.86 2.44 0.17 159.96 2.52 0.32
Gson 228.80 8.74 0.34 228.99 8.91 0.62
JacksonCore 164.72 4.36 1.30 165.38 5.03 2.45
JacksonDatabind 1493.86 48.96 2.51 1504.09 50.03 4.47
JacksonXml 23.76 0.46 0.07 23.81 0.50 0.14
Jsoup 1077.72 23.63 2.77 1078.99 24.79 4.69
JxPath 328.65 12.13 0.31 328.85 12.30 0.60
Lang 565.66 14.66 1.91 566.43 15.39 3.20
Math 1155.29 23.22 2.22 1156.30 24.20 3.89
Mockito 522.26 18.09 0.16 522.18 18.18 0.29
Time 196.94 11.90 0.67 197.26 12.19 1.19

Table 3: Median (from 15 samples) CPU Cycle Performance for different heuristics (in billions of cycles) (All with a
confidence level of 95%). The 1000 and 200 in the Greedy 1000 and Greedy 200 refer the the “Max Size” threshold
used.

11

	Introduction
	Motivating Example and Background
	Motivating Example
	Background

	Related Work
	Methodology
	Recovery phase in Gumtree Simple
	Lazification
	Dataset
	Benchmarking tools
	Evaluation Protocol

	Results
	Discussion
	Research Questions
	Threats to Validity

	Responsible Research
	Conclusions and Future Work
	Reproducibility
	Use of LLMs
	Tables

