
Efficiently Optimizing Hyperparameters for the Gumtree Hybrid Code
Differencing Algorithm within HyperAST

Alexander Nitters1

Supervisor(s): Caroline Brandt1, Quentin Le Dilavrec1

1EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
June 25, 2025

Name of the student: Alexander Nitters
Final project course: CSE3000 Research Project
Thesis committee: Caroline Brandt, Quentin Le Dilavrec, Jesper Cockx

An electronic version of this thesis is available at http://repository.tudelft.nl/.



Abstract
Code differencing allows understanding changes
between different versions of software, especially
when using Abstract Syntax Trees (ASTs) to struc-
turally represent code. The Gumtree algorithm
is the current state-of-the-art algorithm for AST
differencing, however its main drawback is long
runtimes, especially for large ASTs. The Simple
and Hybrid variants aims to solve this issue with
a heuristic-based recovery phase, but their eval-
uation has been limited to small ASTs. Bench-
marks show that the Simple variant results in sig-
nificant improvements in output quality and per-
formance with very large ASTs, while the Hybrid
variant has mixed results. Furthermore, increas-
ing the max_size hyperparameter with the Hy-
brid variant has an unpredictable effect on output
quality and a negative effect on performance, but
min_priority can generally be set to 1. The Diff-
Auto-Tuning optimization approach is deemed of-
ten unusable for large ASTs, though it can be used
to find cases where the Hybrid variant outperforms
the Simple variant on a single data point.

1 Introduction
As software evolves, tracking structural changes in code is es-
sential for understanding its development over time. A com-
mon way to analyze these changes is computing the differ-
ence between two Abstract Syntax Trees (ASTs), which rep-
resent the structure of the code. A code differencing algo-
rithm that works with ASTs generally outputs a sequence of
edit actions to transform one tree into the other, called an edit
script [7]. These edit actions can be, for example, the addition
of a new variable declaration node or moving a method node
to a different class node.

A widely-used algorithm for doing this is Gumtree [7].
The original Gumtree approach includes an optimal recov-
ery phase with a cyclomatic complexity of O(n3), resulting
in large computation times even for relatively small files. To
limit this, the optimal recovery phase is only run on subtrees
smaller than a certain max_size threshold, by default 1000.
The max_size can be increased to offer better edit scripts, or
decreased to make the algorithm run faster.

With the recovery phase being the most expensive, design-
ing a better one would be one of the ways to significantly im-
prove the performance of Gumtree. A simple recovery phase
based on heuristics was designed [6] with a cyclomatic com-
plexity of O(n2), resulting in significantly better runtimes
and edit scripts of similar or close quality to the optimal ver-
sion. However, in some cases the optimal version does pro-
duce a better edit script. In order to combine these the hybrid
approach uses the optimal algorithm for subtrees smaller than
the max_size threshold, but switches to the simple algorithm
for larger subtrees.

The Diff-Auto-Tuning (DAT) approach was proposed
in order to optimize the hyperparameters, including
max_height but also some others [11]. However, Martinez

et al. mostly focus on improving the quality of edit scripts.
There is an evaluation of the performance for some aspects,
but it only uses small file pairs for the hyperparameter op-
timization. ASTs with multiple millions of nodes, such as
those that might be generated for a diff between two full com-
mits in a large repository, are not considered.

More recently, a new variation of the AST, called Hy-
perAST, was developed to address scalability issues with
Gumtree using de-duplication [9]. The original Gumtree
Greedy algorithm was re-implemented to work with Hyper-
AST [10].

In this paper, we will look at how the Gumtree Hybrid algo-
rithm can enable efficient differencing on large ASTs, using
HyperAST. The Simple and Hybrid recovery phases have cur-
rently only been evaluated on smaller ASTs, generated from
a single file. The effect of this new recovery phase on very
large ASTs has not been studied yet to our knowledge, and
HyperDiff has not implemented the Hybrid recovery. Im-
plementing Simple recovery within HyperDiff allows us to
analyse its scalability and the effect of the hyperparameters.
This gives insights into default good values for these hyperpa-
rameters and how they affect both output quality and perfor-
mance. Finally, we will evaluate data-driven hyperparameter
optimization approaches, similar to DAT, for feasibility and
performance.

The rest of this paper is structured as follows. Section
2 presents the terminology, Gumtree algorithm, HyperAST
and Diff-Auto-Tuning in detail, as well as other related work
and the research gap. Section 3 explains the contributions
of this paper, including the implementation of Hybrid recov-
ery and hyperparameter optimization in HyperAST. Section
4 presents the experimental setup for the benchmarks and
the results of the evaluations, and Section 5 discusses these
results. Section 6 presents Responsible Research considera-
tions, and finally Section 7 concludes the paper.

2 Background
This section introduces key terminology, explains Gumtree
Hybrid, HyperAST and DAT hyperparameter optimization,
and introduces related work and the research gap.

2.1 Terminology
An Abstract Syntax Tree (AST) represents code as a tree
structure, such as in Figure 1. Each node has a label that rep-
resents the grammar element, such as MethodDeclarations
or Identifier, and an optional value, which can for exam-
ple be the name of a variable. Tools such as the Eclipse JDT
Java parser or the more recent tree-sitter can generate an AST
from a piece of code. We will use the latter as it is both in-
cluded in later versions of the Java Gumtree implementation
and used by HyperAST.

Differencing algorithms (diff algorithms) compute the
differences between two versions of a program, the source
and destination. Most common diff algorithms, such as the
one used by git, work on the level of lines in a file. How-
ever, there are also many diff algorithms that work with ASTs,
including in chronological order X-Diff [14], Change Dis-
tiller [8], and Gumtree [7]. AST diff algorithms generally



Figure 1: Two example code excerpts and their corresponding Ab-
stract Syntax Trees, with the changes highlighted. Nodes with the
identifier label have the value in italic.

output mappings, which match one node in the source tree
with one node in the destination tree.

An edit script describes a sequence of operations that
should be applied to an AST in order to transform it into
another AST, and can be generated from a set of mappings.
The most common set of operations includes inserting, delet-
ing or updating the label of a node (resp. insert-node,
delete-node, update-node), and moving an entire subtree
(move-subtree). More types of operations have been pro-
posed, such as inserting or deleting an entire subtree [6], or
copy-and-pasting a subtree [12]. The length of an edit script
is a widely-accepted proxy for its quality [7].

2.2 The Gumtree Hybrid algorithm
Gumtree is a state-of-the-art algorithm for differencing
ASTs [7]. This algorithm is divided into three phases, each of
which adds new mappings visible on the example in Figure 2.

The first phase, called top-down matching, matches the
largest isomorphic subtrees in the two ASTs being compared,
but only if they are strictly larger than a predefined size. In
the example, the only identical subtree of size strictly greater
than 1 is the func function call. In this case the function has
been moved to a different place, which the first phase is able
to detect since it does not look at the location of the subtrees.

The second phase, bottom-up matching, propagates the
previous matches up to their parents if the parents have the
same label. In the example, in both the source and destination
trees the parent of the previously matched Call node has the
label Body, so this node will also be matched. This match is
again propagated up, matching the Method nodes.

In the original version of Gumtree, the third phase, called
recovery, is called on each of the nodes mapped during
bottom-up matching in order to find more mappings in the
descendants. To do so, it uses an optimal Tree Edit Distance
algorithm to determine the mappings that minimize the num-
ber of insert-node, update-node and delete-node ac-
tions. This phase has a worst-case time complexity of O(n3)
where n is the number of nodes in both trees, so it is often not
practical to use on large ASTs.

A simpler, heuristic-based recovery phase was developed,
that does not always give the optimal result but runs signifi-
cantly faster [6]. This Simple recovery is divided into three
steps. The first finds the largest structurally isomorphic sub-

Figure 2: The mappings created in each phase of the Gumtree algo-
rithm with the Simple recovery phase

trees, just like in the top-down phase, but without a minimum
size cut-off. In the example from Figure 2, the public, void
and Foo nodes are matched during this step. The second step
is identical to the first but ignores the values of the nodes,
looking only at the labels. Here the subtree with the Call,
print and Hello nodes is matched, since Hello and hello have
different values but both have the identifier label. The last
step, called histogram matching, searches for node types that
appear only once in the children of the nodes matched during
the bottom-up phase, matching the Return node in the exam-
ple. The same paper proposes a Hybrid recovery where the
optimal recovery is used for trees smaller than the max_size
threshold, and the Simple variant for larger trees.

2.3 HyperAST and HyperDiff
A HyperAST structure stores the AST as a compressed
Directed Acyclic Graph, where shared subtrees are de-
duplicated [9]. This sometimes allows comparing subtrees
using referential instead of structural equality, skipping an
expensive check. However, it also means that some struc-
tural information is not stored. When this information is
needed, the nodes are decompressed. HyperDiff, the adap-
tation of Gumtree to work with HyperAST, does so in a lazy
way, which leads to some trees remaining compressed and
therefore improves the performance [10].

2.4 Diff-Auto-Tuning
Martinez et al. specify the hyperparameter space of
GumTree, which is described in Table 1 [11]. They
include 5 hyperparameters, but there are dependencies:
sim_threshold is only applicable for the Greedy variant,
and max_size is only applicable for the Greedy or Simple
variants. This leaves 2210 possible configurations.



Table 1: Hyperparameter space for the GumTree AST Differencing Algorithm [11] (edited)

Hyperparameter Description Default Range Cardinality
bottom-up_matcher Bottom-up matching algorithm Greedy {Greedy, Simple, Hybrid} 3
priority_metric Priority calculator used during top-down

matching
Height {Size, Height} 2

min_priority Minimum priority threshold (using
priority_metric)

1 [1;5] 5

sim_threshold Minimum similarity between AST nodes
during bottom-up matching

0.5 [0.1; 1] 10

max_size Maximum AST node size to match during
bottom-up matching

1000 [100;2000] 20

The Diff-Auto-Tuning (DAT) approach uses multiple hy-
perparameter optimization frameworks in order to obtain op-
timized values for these hyperparameters [11]. The first is
a grid search, which is an exhaustive but inefficient search
amongst all combinations. Martinez et al. also use two sim-
ilar python optimization frameworks, Hyperopt [4] and Op-
tuna [1], in order to run a smarter search.

The cost function used by DAT is the length of the edit
script. When DAT is used for local optimization, a single pair
of files is used in the cost function, meaning that the hyper-
parameters are fitted to a single file. For global optimization,
the average length of the edit script for all pairs of files in a
dataset is used, to find hyperparameter values that work well
in general. Martinez et al. recommend at least 10 or 25 eval-
uations of the cost function with HyperOpt and Optuna, with
50 or 100 evaluations leading to improvements in more cases.

2.5 Other related work
While the paper by Martinez et al. is the most relevant to hy-
perparameter optimization for Gumtree, there are also many
others that have looked into both the quality of the edit scripts
produced by Gumtree and its performance.

Alikhanifard and Tsantalis look in depth at the edit script
quality of the Greedy and Simple variants among others [2].
While the most common proxy for edit script quality is the
number of actions, they also look at more advanced metrics:
the accuracy in multi-mapping, the number semantically in-
compatible mappings, the accuracy in matching program el-
ements or the percentage of perfect diffs. They show that
Gumtree Greedy generally produces more problematic map-
pings than Gumtree Simple. They also present a new tool,
RefactoringMiner, which outperforms Gumtree in edit script
quality, but which is out of scope for this paper. However,
in their evaluation they always use the default hyperparame-
ter values, so we cannot gain insights into the effects of the
hyperparameters on edit script quality from this paper, except
for bottom-up_matcher.

Hyperparameter optimization in general is a common prob-
lem in many fields of computer science, such as machine
learning, but the approaches are often similar for different
contexts. Bergstra et al. compare various optimization ap-
proaches for training neural networks and deep belief net-
works: Gaussian Process (GP), Tree-structured Parzen Es-
timator (TPE), and Random Search [3]. They found that

TPE outperforms GP, random search, and manual search
for finding good hyperparameters. They also mention that
their ”methods are quite general, and extend naturally to any
hyper-parameter optimization problem in which the hyper-
parameters are drawn from a measurable set”, showing these
approaches can be applied diff algorithms. For example, the
TPE approach is used by DAT since it is implemented by the
HyperOpt and Optuna libraries [4] [1].

More efficient hyperparameter optimization approaches
have been proposed, in order to allow optimization even with
a computationally expensive cost function. TPE already al-
lows for a lower amount of evaluations to achieve similar
results to grid search, with Bergstra et al. showing that the
Boston Housing regression task is feasible in 24 hours on a
machine with five GPUs [3]. However, for optimizing com-
plex machine learning models, such as Deep Learning mod-
els, the number of executions of the cost function needs to be
reduced even more. Brzek et al. show that using a genetic al-
gorithm can allow converging towards good values after a low
number of iterations [5], and Moya and Ventura propose the
GAMF2O evolutionary algorithm as a solution to this prob-
lem [13].

2.6 Research gap
The scalability of DAT does not seem to have been exten-
sively evaluated, especially on larger ASTs. Martinez et al.
do analyse the overhead of DAT for local optimization, but
show that performance is not a significant issue for small files:
even when running 100 evaluations with HyperOpt, the max-
imum execution time is quite low (9.85s), and the median diff
time is 0.065s. In comparison, running HyperDiff on a single
pair of commits took up to 1min 24s on the Hadoop and Flink
repositories in the evaluation by Le Dilavrec et al. [10], which
is 1292 times higher. With 2210 possible algorithm configu-
rations, running a grid search on this pair of commits in order
to do local hyperparameter optimization would take over 50
hours assuming the cost function always runs in around 1min
30s. Even more optimized approaches, such as TPE, would
likely take multiple hours.

Global hyperparameter optimization with grid search or
TPE is likely unfeasible in practice for large ASTs. The ex-
ecution time when running global hyperparameter optimiza-
tion is not evaluated by Martinez et al. The cost function is
significantly more expensive than for local optimization since



the diff has to be run over all pairs of files (or commits) in a
dataset. A single evaluation of the cost function over only
100 commits would take around 2.3h on the Hadoop repos-
itory using the runtimes from the HyperDiff evaluation. As
such, another approach for finding optimized hyperparameter
values is needed for large ASTs.

More efficient data-driven approaches, such as using ge-
netic algorithms or GAMF20, could also be evaluated. How-
ever, due to time constraints and the complexity of re-
implementing these to work with HyperAST, they will not be
evaluated within this paper. Furthermore, these approaches
are designed for machine learning problems with a large num-
ber of hyperparameters, so it is possible that they might not
result in large efficiency gains for an algorithm with only 5
hyperparameters.

A possible solution is analysing the effect of each of the hy-
perparameters individually. Since it is not a fully data-driven
approach, it might not result in an optimal configuration and
is subject to different interpretations. However, having an in-
sight into the effect of these parameters can help determine
good default values for different use cases. To our knowl-
edge, this has not been done before with large ASTs with up
to multiple millions of nodes.

Therefore, in this paper we look into the effects of the hy-
perparameters on both the edit script quality and the runtime
of the algorithm, in order to gain insights and suggest default
values for different use cases. Furthermore, we study the use
and feasibility of local hyperparameter optimization on large
ASTs.

3 Contribution
This section describes in detail the contributions of this paper.
The source code for these contributions available in a Github
repository1.

3.1 Porting Gumtree Hybrid to work with
HyperDiff

The first contribution is a port of the Gumtree Hybrid algo-
rithm to work with HyperDiff, using reference implementa-
tion of Gumtree, in Java, as a base2. We reused the top-down
phase from the HyperDiff, leaving only the bottom-up match-
ing and recovery phase to be implemented. To minimize the
risk of differences in the implementation, the program struc-
ture of the original version was followed as closely as possi-
ble.

The correctness of the new implementation was checked
by comparing the edit scripts produced by the Java imple-
mentation and the re-implementation when given an identical
tree. These tests include small example Java files specifically
written to find edge cases and files from the Defects4j dataset.

3.2 Applying HyperDiff optimizations
We implemented a variant of the Hybrid bottom-up matcher
using lazy decompression, based on the lazy Greedy
bottom-up matcher from HyperDiff [10]. During bottom-
up matching, each node must be decompressed using the

1https://github.com/alexn5/hyperast
2https://github.com/GumTreeDiff/gumtree

decompress_to. For optimal recovery, the full subtree must
be decompressed using decompress_descendantsmethod,
but for Simple recovery only decompress_to is necessary.
For the first two steps of the recovery, we can reuse the lazy
algorithm from the top-down phase with a minimum size of
0. Histogram matching only looks at the children and does
not need a fully decompressed subtree. In this way, the lazy
implementation might skip decompressing some subtrees re-
sulting in improved performance.

3.3 Hyperparameter tuning approach
We developed a hyperparameter tuning approach based on
DAT. Since the libraries used by Falleri et al. are not available
in Rust, the rust-tpe library was used instead, which also
implements TPE. Grid search was also implemented.

A first version was implemented where
bottom-up_matcher, sim_threshold and max_size
were included in the optimization. priority_metric
and min_priority were excluded, as values other than
1 showed no improvements. This results in 221 possible
algorithm configurations, a significant decrease from the
2210 configurations from DAT.

A second version was implemented optimizing only the
max_size hyperparameter, due to results showing this has
the most potential to result in shorter edit scripts. In our im-
plementation we made the max_size values continuous, in-
stead of using steps of 100, since this should not impact the
number of evaluations needed but might result in more opti-
mized values.

4 Experimental Setup and Results
This section first presents the research questions, then ex-
plains the methodology, the datasets used for the benchmarks,
and the results.

4.1 Research questions
We first study the effect of the hyperparameters on both the
edit script quality and performance: bottom-up_matcher,
max_size and min_priority (resp. RQ1, RQ2, RQ3).
sim_threshold is excluded as it is not relevant for the Sim-
ple or Hybrid variants. We then evaluate if the lazy variant
of the Hybrid algorithm improves the performance without
changing the output (RQ4). Finally, we see if the DAT ap-
proach for local and global hyperparameter optimization is
applicable to large ASTs (RQ5).

RQ1 To what extent is the performance and output quality of
the Gumtree Hybrid algorithm affected by the size of the
AST, compared to Gumtree Greedy?

RQ2 What is the effect of the max_size hyperparameter with
ASTs of varying sizes?

RQ3 What is the effect of the min_priority hyperparameter
with ASTs of varying sizes?

RQ4 To what extent do the optimizations included in Hy-
perDiff (mainly lazy decompression) affect the perfor-
mance when applied to the Gumtree Hybrid algorithm?



RQ5 To what extent do the local and global hyperparameter
optimization approaches from DAT also apply to large
ASTs?

4.2 Methodology
This paper focuses on two aspects of the Gumtree algorithm:
performance and output quality.

We measure performance using execution time of the
bottom-up matching phase. There are alternatives, such as the
number of CPU cycles or of memory accesses, but runtime
is a common metric that reflects scalability well. Its main
drawback is that it varies between devices, so all benchmarks
were run on the following system: AMD Ryzen 7 8845HS @
3.8GHz, 32Gb RAM, 1 Tb SSD, running Fedora Linux 42. All
runs used identical power settings, with the laptop plugged in
and, to the best of our ability, no other intensive processes
running. We also measured the memory footprint using Je-
malloc, but excluded it from results since it did not allow for
any additional insights and was measured for the entire algo-
rithm, instead of just the bottom-up matcher.

Small runtime benchmarks, on a single pair of files or
commits, were done using the Criterion statistics-driver Rust
benchmarking library. We used the iter_custom method to
only measure the runtime for the bottom-up matcher.

For benchmarks over the entire dataset we measured the
runtime a single time for each pair of commits in order to
limit computation time. We expect the execution times over
the dataset to follow a log-normal distribution, instead of a
normal distribution, due to some parts of the algorithm hav-
ing a time complexity of O(n2) or O(n3). Therefore, for sta-
tistical confidence we always use the Mann-Whitney U-test
which does not assume normality.

We use the edit script length as a metric for output quality.
We did not have the time to do a study with a manual compar-
ison of the edit script quality as done by Falleri et al. [7] [7].
Their qualitative analysis validates the length of the edit script
as a metric for the quality, with the only relevant exception
being the rare aggressive recovery case where a shorter edit
script contains confusing update actions. Alikhanifard and
Tsantalis also show that in limited cases shorter edit scripts
include actions that are semantically confusing [2], but this
problem cannot easily be solved by language-agnostic algo-
rithms.

Appendix A includes instructions to run the benchmarks
for reproducibility.

4.3 Datasets
Datasets were selected based on use in other papers and com-
patibility with HyperAST. HyperAST currently supports the
Tree-Sitter parser, Java language and Maven build system.
The same dataset was used as for evaluating HyperAST [9],
which includes a selection of large Java repositories. We ex-
cluded Hadoop, Flink and Dubbo since their size meant the
benchmarks could not be run within a reasonable time on the
available hardware. We used 50 pairs of commits for the
smaller repositories (slf4j, gson, arthas, jackson-core, sky-
walking, spark, maven), and 30 pairs for the larger ones (aws-
toolkit-eclipse, spoon, javaparser, jenkins, logging-log4j2,
fastjson, netty, guava, quarkus).

Furthermore, the Defects4j dataset was also used in order
to check the output of the implementation, and to get an idea
of the behaviour of the algorithm. This is one of the dataset
used to evaluate the Gumtree Hybrid algorithm [6].

4.4 Results
RQ1 To what extent is the performance and output
quality of the Gumtree Hybrid algorithm affected by the
size of the AST, compared to Gumtree Greedy?
The Simple variant tends to be faster than the Greedy variant,
also for diffs on large AST, though the difference tends to
decrease both with an increasing AST size and a decreasing
number of changes. Figure 3 shows relative gains of -77.7%
(p < 0.019) on some small ASTs and -56.9% (p < 0.002) on
some larger ones, for 1 to 10 changes. ASTs over 18M nodes
even result in increase in the mean runtime, but the p-value
is too high to be able to say this is a statistically significant
difference. Furthermore, a higher number of changes also
leads to a larger relative gain, and this is visible across all
AST sizes.

The extra cost incurred in the Hybrid variant by always run-
ning Simple recovery is often between 20% and 50%, even
on large ASTs. We can always expect Gumtree Hybrid to be
slower than Gumtree Greedy for the same max_size hyper-
parameter value since the Hybrid variant will always run the
same optimal recovery as the Greedy variant, but also run the
Simple recovery. However, as can be seen in Figure 3, the
relative increase in runtime is limited to 70.7% (p < 0.001)
on ASTs with 1.00M to 2.83M nodes and 10 to 1000 changes,
while being lower than that for all other facets.

On the other hand, Hybrid often produces shorter edit
scripts than Greedy. With a max_size of 50, Hybrid results
in shorter edit scripts in 67.0% of cases and no difference in
33% of cases, as can be seen in Figure 4. With a max_size
of 1000, 65.1% of cases result in a decrease, 34.5% in no
change, and two cases (0.4%) in an increase. Extra actions
decrease with a larger max_size, with a median increase of
728.5 for 50 and 373.0 for 1000 (nonzero cases only).

RQ2 What is the effect of the max size hyperparameter
on the Gumtree Hybrid algorithm with ASTs of varying
sizes?
A max_size of 200 does not result in a significantly higher
execution time than Simple (equivalent to a max_size of 0),
but 500 and 1000 do show increases. Figure 5 shows that
for max_size of 50 the loss in the mean runtime is always
below 10%, with p-values often above 0.5 indicating no sta-
tistically significant difference. For a max_size of 500 we
see losses up to 471.8% (p < 0.001), and for 1000 up to
2064.6% (p < 0.001). However, some other facets with high
losses also show high p-values, likely due to insufficient data
points, which limits reliability.

The increase in runtime when using a larger max_size
is more pronounced for smaller ASTs and ASTs with many
changes. With a max_size of 1000, Figure 5 shows losses
of up to 2155.0% (p < 0.001) for ASTs with over 1000
changes, but only in a 320.1% (p < 0.001) with 1 to 10
changes. This effect is visible across all AST sizes and val-
ues of max_size. Furthermore, with larger ASTs the loss



Figure 3: Bottom-up phase execution times for Greedy-1000, Simple, Hybrid-100 and Hybrid-1000
Facet Legend: relative gain in % compared to Greedy-1000, two-tailed p-value (Mann-Whitney), avg. time

Figure 4: Number of commit pairs by decrease in number of actions
between the Greedy and Hybrid variants, with max size = 50

also tends to be smaller. In fact, for ASTs with more than
18M nodes and 1 to 10 changes, we observe no statistically
significant difference in runtime for any value of max_size.

At the same time, the effect of max_size on the output is
unpredictable. Higher vThough there does seem to be a slight
tendency towards shorter edit scripts with higher values, as
seen in Table 2, a Mann-Whitney U-test on the number of
actions between a max_size of 0 and 1000 gives a p-value of
0.51, indicating no statistically significant difference. Many
commit pairs result in the same edit script length for all values
of max_size we tested.

This contrasts with Greedy, where the output quality im-
proves as max_size increases. We find a mean increase of
224 actions from a max_size of 50 to 500 (p < 0.096) and
294 actions from 50 to 1000 (p < 0.008) on our dataset. We
almost always see a decrease or no change in edit script length
when increasing max_size: between 50 and 1000, we ob-
serve 214 decreases, 341 unchanged cases and 2 increases.

No clear pattern emerges between the edit script length re-
lated and max_size. Figure 6 shows the number of actions
obtained when running with different max_size values, com-

pared to Simple, on various commit pairs. In many cases, the
edit script produced with a max_size of 50 is already signif-
icantly longer or shorter. Further increases to max_size may
reduce, increase, or leave the number of actions unchanged,
and this variability is similar across all AST sizes.

max_size 50 100 200 500 1000
Decrease 39 56 67 90 91
No change 452 433 420 401 392
Increase 61 62 62 56 63

Table 2: Distribution of changes in edit script length for different
values of max size, compared to max size = 0 (Simple).

RQ3 What is the effect of the min priority
hyperparameter on the Gumtree Hybrid algorithm with
ASTs of varying sizes?
Increasing the min_priority hyperparameter negatively af-
fects output quality without any significant effect on per-
formance. The median number of actions on a subset of
the dataset increases from 104 with priority_metric =
height and min_priority = 1, to 202 with min_priority
= 5, while the median runtime stays the same at 0.40s. 60.5%
of cases where the edit scripts are not equal show an increase
in length with a min_priority of 2 and 80.9% with 3.

RQ4 To what extent do the optimizations included in
HyperDiff (mainly lazy decompression) affect the
performance when applied to the Gumtree Hybrid
algorithm?
As mentioned in Section 3.2, the output of the Hybrid vari-
ant and Hybrid Lazy variant is always equal. This has been
tested by checking the output of both algorithms for all pairs
of commits in the repository dataset, with 4 pairs of commits
out of 560 resulting in different outputs.



Figure 5: Bottom-up phase execution times for Gumtree Hybrid with max size 0 (simple), 50, 100, 200, 500, 1000
Facet Legend: relative loss in % compared to Simple, two-tailed p-value (Mann-Whitney), avg. time

Figure 6: Change in number of actions for different max size values (symlog scale), compared to Simple. Each line is a commit pair.

However, the lazy implementation almost always results in
an increase in execution time. On the lazy implementation,
we can consistently observe an increase in the runtime com-
pared to the non-lazy implementation. The biggest increase
is with a max_size of 50, for ASTs with 25k to 268k nodes
and 1 to 10 changes, with the original implementation being
355.1% faster than the lazyfied version (p < 0.001). On the
other side, for ASTs above 18M nodes with more than 1000
changes and for a max_size of 1000, the original implemen-
tation is still 69.5% faster than the lazyfied one (p < 0.008).

RQ5 To what extent does the DAT approach also apply to
large ASTs?
Because of the results from the previous research questions,
our latest implementation of hyperparameter optimization
only included the max_size hyperparameter.

Local hyper optimization is possible but sometimes im-
practical with small or medium-sized repositories, but it does
often result good hyperparameters. Running TPE with 100
evaluations on a single pair of commits from the maven repos-
itory took 2.1 hours and resulted in a max_size of 619, giving
an edit script length of 4224 compared to 4302 when running

Gumtree Simple on the same commit. Running TPE with
10 evaluations on the slf4j dataset took 11.6 minutes, finding
that a max_size of 984 produced an edit script of length 993,
compared to 1051 with Gumtree simple.

On the smallest repositories in the dataset, local hyperpa-
rameter optimization is feasible. For example, on the gson
respository, it found a better configuration than Simple in 2
out of 17 cases with a median runtime of 283.1s and a maxi-
mum runtime of 952.0s, with 10 evaluations.

Global hyperparameter optimization over the entire dataset
is likely unfeasible even on more powerful hardware. On the
hardware we used, a single evaluation of the cost function was
not finished after over 30 hours and therefore the optimization
was stopped early. As such, the hardware we have does not
permit running global optimization. Since the dataset also
excludes the largest repositories (Hadoop, Flink and Dubbo),
including these would increase the runtime even more, likely
making optimization unfeasible even with significantly better
hardware.



5 Responsible Research
There are multiple factors that can affect the reproducibility
of this paper. We have listed some of them below as well Re-
producibility is particularly important in this field of research,
however there are three factors that can have a negative im-
pact on it.

The first is the variability of benchmarks on different sys-
tems. All types of benchmarks can produce very different
results depending on the operating system, architecture, and
other parameters. There is little that can be done about this,
but the threat to the validity of the results is limited if all
benchmarks are run on an identical system. In this paper,
all benchmarks were run on the system indicated in section 4,
in order to allow all results to be compared.

The second factor is the inherent variability in benchmarks,
even on the same system. Benchmarks that measure runtime
can be very strongly affected by other processes running on
the system, if the system is in a power saving state, and many
other factors. In order to mitigate this, all benchmarks were
run in as similar of a state as possible. An effort was made
to use sample sizes as large as possible, but due to the high
computational costs when working with the larger reposito-
ries this was not always possible.

The third factor is the accessibility of the results. All of
the results in this paper will be supported with instructions
to run the benchmarks in Appendix A. Both the code for the
implementation of the Hybrid algorithm and benchmarks are
available in a Github repository, and the notebooks used to
analyze the data are also accessible. All datasets used are
openly available and based on software projects with an open-
source license, legally permitting their use in this research
project.

6 Discussion
This section discusses the results, starting with the effect of
the hyperparameters (RQ1, RQ2, RQ3), the optimizations
from HyperDiff (RQ4) and the applicability of DAT (RQ5).

6.1 Effect of hyperparameters
Our results suggest that the Simple variant is generally the
best algorithm to use on large ASTs. The Greedy variant has
a both worse performance and output quality. Alikhanifard
and Tsantalis also show the Simple variant produces better
edit scripts than Greedy using more detailed metrics than edit
script length [2]. The Hybrid variant shows mixed results
for output quality and a similar performance to Greedy. If
using the Hybrid variant we recommend a max_size of at
least 1000, since values below this seem to lead to increases
in edit script length more often than decreases, though this
trend falls just short of statistical significance on our dataset.

Furthermore, the min_priority hyperparameter results
in the shortest edit scripts at its default value of 1, and
any other value does not result in a significant improve-
ment in runtime. Therefore, it is likely not worth including
this hyperparameter when doing hyperparameter optimiza-
tion. This is confirmed by the results from Martinez et al.,
where the global configurations found by DAT always include
min_priority = 1 [11]. In this case, priority_metric is

also not important, since the size and height of a single node
is always 1.

This leaves max_size as the only hyperparameter
that benefits meaningfully from optimization, as well as
bottom-up_matcher using only the Simple and Hybrid
variants. We recommend keeping the default value of 1 for
min_priority and the sim_threshold hyperparameter is
only relevant to the Greedy variant.

6.2 Effect of HyperDiff optimizations
Our lazy decompression implementation results in an in-
crease in runtime, which might be caused by an implemen-
tation bug. In the evaluation of the lazyfied bottom-up phase
of Gumtree Greedy by Le Dilavrec et al., we only see an im-
provement for large ASTs, where a significant part of the tree
is not decompressed due to it being above the max_height
threshold [10]. Since the Hybrid recovery also should leave
some parts of the tree decompressed, we expect to see a simi-
lar result. As such, this increase could be caused by an imple-
mentation bug. Another possible explanation for the increase
is that decompressing the entire subtree all at once is faster
than calling the decompression multiple times, but we do not
expect to see such a large increase if this is the issue.

6.3 Applicability of DAT on large ASTs
Local hyperparameter optimization is able to find the cases
where the Hybrid variant does produce a better result than
the Simple variant, however on larger repositories it is often
impractical or even infeasible to run due to large computation
times.

If quick runtimes are needed, for example in developer
tools which need to show a diff to the user in a reasonable
time, we recommend using the Gumtree Simple algorithm
which has no hyperparameters to optimize. However, if a
shorter edit script is more important, we recommend using
local hyperparameter optimization on the Gumtree Hybrid al-
gorithm while optimizing only the max_height hyperparam-
eter, as long as the ASTs are not too large. This might be the
helpful in research into software evolution for example. This
mirrors the recommendation from Martinez et al. [11].

With only the max_size hyperparameter to optimize, TPE
efficiently determines good hyperparameter values. As such,
we do not think it is necessary to look at more advanced
hyperparameter optimization approaches such genetic algo-
rithms, as they will likely not result in significant improve-
ments.

6.4 Threats to validity
Internal validity. Benchmarks results vary depending on the
hardware they are run on, but also for example on power sav-
ing settings or another process taking up resources. We have
made efforts to limit this variability (see Section 5) and used
statistical tests on the results. There might be bugs in our im-
plementations, resulting in incorrect outputs or slowdowns.
For the first case, we have written tests to validate the outputs
of our implementation, but the second case is more difficult to
mitigate. We suspect there is a bug in the lazy implementation
since we are unable to explain the decrease in performance.



Finally, we used a relatively small dataset due to the limita-
tions of available hardware.

External validity. In a lot of places, we did not benchmark
certain items or values due to the hardware at our availability
not being powerful enough to run the benchmarks in a reason-
able time. For example, values of max_size above 1000 were
not included in the evaluation for RQ2, and the three largest
repositories were excluded from the dataset. While we did
observe patterns in the data without these larger values and
extrapolated these in our conclusions, Furthermore, this pa-
per only uses a single language (Java), build system (Maven)
and AST meta-model (tree-sitter). Further experimentation
is necessary to determine if our findings are generalizable to
other situations.

7 Conclusions
The Gumtree Simple algorithm can enable efficient code dif-
ferencing on large ASTs, which can be shown using Hyper-
AST in order to run diffs on very large ASTs generated from a
commit in a repository. It produces shorter edit scripts com-
pared to the Greedy variant, and is generally faster, though
the gain in performance compared to the Greedy variant de-
creases when the size of the ASTs increase.

If quick runtimes are needed, we recommend using the
Gumtree Simple algorithm, which has no hyperparameters.
If a shorter edit script is more important, we recommend us-
ing local hyperparameter optimization on the Gumtree Hy-
brid algorithm while optimizing only max_height, as long
as the repository or ASTs are not too large.

A Reproducibility
This appendix describes how to reproduce the re-
sults from this paper. All of the following instruc-
tions are for our fork of the HyperAST repository
at https://github.com/alexn5/HyperAST. Commit
1b48a6dd9e18f8af58b268e87fd67a352bb557e7 in-
cludes all of the benchmarks that were included in this
paper.

The algorithm implementations are in
crates/hyper diff/src/matchers/heuristic/gt.
In this paper we mainly compare the
greedy bottom up matcher.rs (modi-
fied), hybrid bottom up matcher.rs (new),
lazy hybrid bottom up matcher.rs (new).

The tests to check the output of these algorithms are in
crates/hyper diff/tests.

The benchmarking scripts are in
benchmark_diffs/benches, and can be run with:

cargo bench -p hyperast_benchmark_diffs
--bench <name_of_benchmark>

The benchmarks that measure runtime and memory us-
age for all variants for the large AST dataset are in
benchmark diffs/cross repo hybrid.rs. To run them,
use:

cargo run --release --package
hyperast_benchmark_diffs --bin

cross_repo_hybrid <output_file_path>.csv
<number_of_commits> <name_of_repo>;

ObservableHQ was used to generate the plots and analyze
the data.

• https://observablehq.com/d/100b329c70c51752
• https://observablehq.com/d/c029bfeb2e9597ba
• https://observablehq.com/d/45a0bd91ce2d73e9

B Use of LLMs
Large Language Models were used used as a productivity tool
while writing this paper. This includes ChatGPT and Gemma.

No output of the LLM was included verbatim in the text
of the paper, instead the output LLM was used as a starting
point for additions or modifications. LLMs were used only
for the following cases (each case has a representative sample
of prompts):

Creating plots in ObservableHQ. LLMs were used to un-
derstand existing plots in ObservableHQ and create or modify
new ones.

• How can I facet this plot based on src s? I would like to
specify the upper and lower bound for each facet. [ex-
isting code for the plot]

• Can you explain the following code from an Observ-
ableHQ notebook? [existing code from a notebook]

• I have a csv with the following columns: input,
kind, max size, src s, dst s, mappings, actions, pre-
pare topdown t, topdown t. Could you generate a scat-
terplot for ObservableHQ that shows the max size on the
x-axis, and on the y-axis the ratio between the number
of mappings for the specified max size and the number
of mappings with max size 0?

Formatting of the report. LLMs were used to create ta-
bles and other elements in this report. For these prompts some
output of the LLM was used verbatim in the report, but it
was always checked for correctness and did not contain any
changes to the content itself.

• Can you format this list nicely in latex? [list of RQs]
• How can I make a table full-width in a two-column latex

document
• Could you transform this into a list of the repositories

(eg slf4j, gson) that have the value 50, and a list
that have the value 30: cargo run –release –package
hyperast benchmark diffs –bin cross repo hybrid
./perfs new/perfs slf4j.csv 50 slf4j [rest of commands]

• Could you transform this data into a latex table? in-
crease table = Object { 50: Object { decrease: 39, equal:
452, increase: 61 }, 100: Object { decrease: 56, equal:
433, increase: 62 }, 200: Object { decrease: 67, equal:
420, increase: 62 }, 500: Object { decrease: 90, equal:
401, increase: 56 }, 1000: Object { decrease: 91, equal:
392, increase: 63 } }

Shortening the text. LLMs were used to determine which
parts of the text could be removed or shortened, since the
original paper was too long.

https://github.com/alexn5/HyperAST
https://observablehq.com/d/100b329c70c51752
https://observablehq.com/d/c029bfeb2e9597ba
https://observablehq.com/d/45a0bd91ce2d73e9


• Could you determine if there is anything that can be re-
moved in this section, such as unnecessary or duplicate
information: [contents of section]

• How could I make this sentence more concise? [sen-
tence]

Brainstorming. LLMs were used to come up with ways to
visualize data and phrase sentences.

• Is this first sentence of a research paper a good hook?
[sentence]

• What type of plot could I use to represent this data? I
want to show the increase in the number of mappings,
depending on src s and max size: [data]

References
[1] Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru

Ohta, and Masanori Koyama. Optuna: A next-
generation hyperparameter optimization framework. In
Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining,
2019.

[2] Pouria Alikhanifard and Nikolaos Tsantalis. A Novel
Refactoring and Semantic Aware Abstract Syntax Tree
Differencing Tool and a Benchmark for Evaluating the
Accuracy of Diff Tools. ACM Transactions on Software
Engineering and Methodology, 34(2):1–63, February
2025.

[3] James Bergstra, Rémi Bardenet, Yoshua Bengio, and
Balázs Kégl. Algorithms for hyper-parameter opti-
mization. In Proceedings of the 25th International
Conference on Neural Information Processing Systems,
NIPS’11, page 2546–2554, Red Hook, NY, USA, 2011.
Curran Associates Inc.

[4] James Bergstra, Brent Komer, Chris Eliasmith, Dan
Yamins, and David D Cox. Hyperopt: a python li-
brary for model selection and hyperparameter optimiza-
tion. Computational Science Discovery, 8(1):014008,
jul 2015.

[5] Bartłomiej Brzek, Barbara Probierz, and Jan Kozak.
Exploration-driven genetic algorithms for hyperparame-
ter optimisation in deep reinforcement learning. Applied
Sciences, 15(4), 2025.

[6] Jean-Remy Falleri and Matias Martinez. Fine-grained,
accurate and scalable source differencing. In Proceed-
ings of the IEEE/ACM 46th International Conference
on Software Engineering, pages 1–12, Lisbon Portugal,
April 2024. ACM.

[7] Jean-Rémy Falleri, Floréal Morandat, Xavier Blanc,
Matias Martinez, and Martin Monperrus. Fine-grained
and accurate source code differencing. In Proceed-
ings of the 29th ACM/IEEE International Conference
on Automated Software Engineering, pages 313–324,
Vasteras Sweden, September 2014. ACM.

[8] Beat Fluri, Michael Wursch, Martin PInzger, and Harald
Gall. Change distilling:tree differencing for fine-grained

source code change extraction. IEEE Transactions on
Software Engineering, 33(11):725–743, 2007.

[9] Quentin Le Dilavrec, Djamel Eddine Khelladi, Arnaud
Blouin, and Jean-Marc Jézéquel. HyperAST: Enabling
Efficient Analysis of Software Histories at Scale. In
Proceedings of the 37th IEEE/ACM International Con-
ference on Automated Software Engineering, pages 1–
12, Rochester MI USA, October 2022. ACM.

[10] Quentin Le Dilavrec, Djamel Eddine Khelladi, Arnaud
Blouin, and Jean-Marc Jézéquel. HyperDiff: Comput-
ing Source Code Diffs at Scale. In Proceedings of the
31st ACM Joint European Software Engineering Con-
ference and Symposium on the Foundations of Software
Engineering, pages 288–299, San Francisco CA USA,
November 2023. ACM.

[11] Matias Martinez, Jean-Rémy Falleri, and Martin Mon-
perrus. Hyperparameter Optimization for AST Differ-
encing. IEEE Transactions on Software Engineering,
49(10):4814–4828, October 2023.

[12] Junnosuke Matsumoto, Yoshiki Higo, and Shinji
Kusumoto. Beyond GumTree: A Hybrid Approach to
Generate Edit Scripts. In 2019 IEEE/ACM 16th Inter-
national Conference on Mining Software Repositories
(MSR), pages 550–554, Montreal, QC, Canada, May
2019. IEEE.

[13] Antonio R. Moya and Sebastian Ventura. A multi-
fidelity genetic algorithm for hyperparameter optimiza-
tion of deep neural networks. IEEE Transactions on
Evolutionary Computation, 2025.

[14] Y. Wang, D.J. DeWitt, and J.-Y. Cai. X-diff: an effec-
tive change detection algorithm for xml documents. In
Proceedings 19th International Conference on Data En-
gineering (Cat. No.03CH37405), pages 519–530, 2003.


	Introduction
	Background
	Terminology
	The Gumtree Hybrid algorithm
	HyperAST and HyperDiff
	Diff-Auto-Tuning
	Other related work
	Research gap

	Contribution
	Porting Gumtree Hybrid to work with HyperDiff
	Applying HyperDiff optimizations
	Hyperparameter tuning approach

	Experimental Setup and Results
	Research questions
	Methodology
	Datasets
	Results
	RQ1 To what extent is the performance and output quality of the Gumtree Hybrid algorithm affected by the size of the AST, compared to Gumtree Greedy?
	RQ2 What is the effect of the max_size hyperparameter on the Gumtree Hybrid algorithm with ASTs of varying sizes?
	RQ3 What is the effect of the min_priority hyperparameter on the Gumtree Hybrid algorithm with ASTs of varying sizes?
	RQ4 To what extent do the optimizations included in HyperDiff (mainly lazy decompression) affect the performance when applied to the Gumtree Hybrid algorithm?
	RQ5 To what extent does the DAT approach also apply to large ASTs?


	Responsible Research
	Discussion
	Effect of hyperparameters
	Effect of HyperDiff optimizations
	Applicability of DAT on large ASTs
	Threats to validity

	Conclusions
	Reproducibility
	Use of LLMs

