Ludovic Leclercq (Recipient), F Marczak (Recipient), Victor Knoop (Recipient) & Serge Hoogendoorn (Recipient)

This paper deals with the derivation of analytical formulae to estimate the effective capacity at freeway merges in a multilane context. Effective capacity means the capacity observed when the merge happens to be the head of the congestion. It extends two previous papers that are based on the same modeling framework but that are restricted to a single lane on the freeway (or to the analysis of the right lane only). The analytical expression for the one-lane capacity is recursively applied for all lanes. Lane-changing maneuvers (mandatory for the on-ramp vehicles and discretionary for others) are divided into two non-overlapping local merging areas.Usually, estimating the effective capacity at freeway merges requires a traffic simulator and multiple runs. Here, the analytical formulae provide a first estimation considering most of the important parameters related both to road design (e.g. length of the inserting length, number of lanes), and the traffic composition (e.g. truck proportion, vehicle acceleration capabilities). A sensitivity analysis shows that vehicle acceleration and the truck ratio are the most influential parameters for the total capacity. The analytical formulae are proven to provide very good estimates when compared to experimental data for an active merge on the M6 freeway in UK.
Awarded date2016
Degree of recognitionInternational
Granting OrganisationsTransportation Research Board

ID: 20366840