Audio codecs for automotive applications and smartphones require up to five stereo channels to achieve effective acoustic noise and echo cancellation, thus demanding ADCs with low power and minimal die area. Zoom-ADCs should be well suited for such applications, since they combine compact and energy-efficient SAR ADCs with low-distortion ΔΣ ADCs to simultaneously achieve high energy efficiency, small die area, and high linearity [1,2]. However, previous implementations were limited to the conversion of quasi-static signals, since the two ADCs were operated sequentially, with a coarse SAR conversion followed by, a much slower, fine ΔΣ conversion. This work describes a zoom-ADC with a 20kHz bandwidth, which achieves 107.5dB DR and 104.4dB SNR while dissipating 1.65mW and occupying 0.16mm2. A comparison with recent state-of-the-art ADCs with similar resolution and bandwidth [3-7] shows that the ADC achieves significantly improved energy and area efficiency. These advances are enabled by the use of concurrent fine and coarse conversions, dynamic error-correction techniques, and an inverter-based OTA.
Original languageEnglish
Title of host publication2016 IEEE International Solid-State Circuits Conference, ISSCC 2016
Subtitle of host publicationDigest of Technical Papers
EditorsLaura C. Fujino
Place of PublicationDanvers, MA
PublisherIEEE
Pages282-283
Number of pages2
ISBN (Electronic)978-1-4673-9467-3
ISBN (Print)978-1-4673-9466-6
DOIs
Publication statusPublished - 1 Feb 2016
Event2016 IEEE International Solid-State Circuits Conference, ISSCC 2016 - San Francisco, CA, United States
Duration: 31 Jan 20164 Feb 2016
http://isscc.org/index.html

Conference

Conference2016 IEEE International Solid-State Circuits Conference, ISSCC 2016
Abbreviated titleISSCC 2016
CountryUnited States
CitySan Francisco, CA
Period31/01/164/02/16
Internet address

    Research areas

  • Modulation, Capacitors, Solid state circuits, Energy efficiency, Linearity, Bandwidth, Vehicle dynamics

ID: 11340352