A 2-D simulation study on CO2 soluble surfactant for foam enhanced oil recovery

Yongchao Zeng, Rouhi Farajzadeh*, Sibani L. Biswal, George J. Hirasaki

*Corresponding author for this work

Research output: Contribution to journalArticleScientificpeer-review

18 Citations (Scopus)
100 Downloads (Pure)

Abstract

This paper probes the transport of CO2 soluble surfactant for foaming in porous media. We numerically investigate the effect of surfactant partitioning between the aqueous phase and the gaseous phase on foam transport for subsurface applications when the surfactant is injected in the CO2 phase. A 2-D reservoir simulation is developed to quantify the effect of surfactant partition coefficient on the displacement conformance and CO2 sweep efficiency. A texture-implicit local-equilibrium foam model is embedded to describe how the partitioning of surfactant between water and CO2 affects the CO2 foam mobility control when surfactant is injected in the CO2 phase. We conclude that when surfactant has approximately equal affinity to both the CO2 and the water, the transport of surfactant is in line with the gas propagation and therefore the sweep efficiency is maximized. Too high affinity to water (small partition coefficient) results in surfactant retardation whereas too high affinity to CO2 (large partition coefficient) leads to weak foam and insufficient mobility reduction. This work sheds light upon the design of water-alternating-gas-plus-surfactant-in-gas (WAG + S) process to improve the conventional foam process with surfactant-alternating-gas (SAG) injection mode during which significant amount of surfactant could possibly drain down by gravity before CO2 slugs catch up to generate foam in situ the reservoir.
Original languageEnglish
Pages (from-to)133-143
Number of pages11
JournalJournal of Industrial and Engineering Chemistry
Volume72
DOIs
Publication statusPublished - 2019

Bibliographical note

Green Open Access added to TU Delft Institutional Repository ‘You share, we take care!’ – Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.

Keywords

  • CO
  • Enhanced oil recovery (EOR)
  • Foam
  • Foam simulation
  • Gas breakthrough
  • Mobility control
  • Nonionic surfactant
  • Partition coefficient

Fingerprint

Dive into the research topics of 'A 2-D simulation study on CO2 soluble surfactant for foam enhanced oil recovery'. Together they form a unique fingerprint.

Cite this