Offshore wind farms have developed fast as an environmentally friendly source of energy. The submarine power cable of the offshore wind farm, used for connecting power generation devices to onshore equipment, may have a significant impact on navigation safety and is prone to being damaged (e.g. caused by fishing or emergency anchoring by ships) when adopting unfavorable routing. This paper proposes a fuzzy evidential reasoning method for submarine power cable routing selection of the offshore wind farm by comprehensively considering the conditions for cable laying and its influence on maritime safety. The kernel of this approach is to establish a three-layer decision-making framework after fuzzification of the input variables, to derive the belief rule base, and to obtain the optimal routing from the submarine power cable candidates using evidential reasoning and index value. The proposed approach is applied to a real routing selection problem of a submarine power cable for an offshore wind farm in Zhejiang Province of China. The resulting choice corresponds to the discussions in a workshop unanimously.

Original languageEnglish
Article number106616
JournalOcean Engineering
Publication statusPublished - 2019

    Research areas

  • Decision-making, Fuzzy evidential reasoning, Maritime safety, Navigational environment, Offshore wind farm, Submarine power cable routing

ID: 62901636