A computational fracture analysis is conducted on a self-healing particulate composite employing a finite element model of an actual microstructure. The key objective is to quantify the effects of the actual morphology and the fracture properties of the healing particles on the overall mechanical behaviour of the (MoSi2) particle-dispersed Yttria Stabilised Zirconia (YSZ) composite. To simulate fracture, a cohesive zone approach is utilised whereby cohesive elements are embedded throughout the finite element mesh allowing for arbitrary crack initiation and propagation in the microstructure. The fracture behaviour in terms of the composite strength and the percentage of fractured particles is reported as a function of the mismatch in fracture properties between the healing particles and the matrix as well as a function of particle/matrix interface strength and fracture energy. The study can be used as a guiding tool for designing an extrinsic self-healing material and understanding the effect of the healing particles on the overall mechanical properties of the material.
Original languageEnglish
Pages (from-to)533-545
Number of pages13
JournalFatigue and Fracture of Engineering Materials and Structures
Issue number2
Publication statusPublished - 2019

    Research areas

  • cohesive elements, fracture mechanism, fracture properties, healing particles, self-healing material, thermal barrier coatings

ID: 47015281