A polymorphic element formulation towards multiscale modelling of composite structures

E.S. Kocaman, B. Y. Chen, S. T. Pinho

Research output: Contribution to journalArticleScientificpeer-review

9 Citations (Scopus)
59 Downloads (Pure)

Abstract

This paper presents a new polymorphic element modelling approach for multi-scale simulation, with an application to fracture in composite structures. We propose the concept of polymorphic elements; these are elements that exist as an evolving superposition of various states, each representing the relevant physics with the required level of fidelity. During a numerical simulation, polymorphic elements can change their formulation to more effectively represent the structural state or to improve computational efficiency. This change is achieved by transitioning progressively between states and by repartitioning each state on-the-fly as required at any given instant during the analysis. In this way, polymorphic elements offer the possibility to carry out a multiscale simulation without having to define a priori where the local model should be located. Polymorphic elements can be implemented as simple user-defined elements which can be readily integrated in a Finite Element code. Each individual user-defined polymorphic element contains all the relevant superposed states (and their coupling), as well as the ability to self-refine. We implemented a polymorphic element with continuum (plain strain) and structural (beam) states for the multiscale simulation of crack propagation. To verify the formulation, we applied it to the multiscale simulation of known mode I, mode II andmixed-mode I and II crack propagation scenarios, obtaining good accuracy and up to 70% reduction in computational time —the reduction in computational time can potentially be even more significant for large engineering structures where the local model is a small portion of the total. We further applied our polymorphic element formulation to the multiscale simulation of a more complex problem involving interaction between cracks (delamination migration), thereby demonstrating the potential impact of the proposed multiscale modelling approach for realistic engineering problems.

Original languageEnglish
Pages (from-to)359-387
Number of pages29
JournalComputer Methods in Applied Mechanics and Engineering
Volume346
DOIs
Publication statusPublished - 2019

Bibliographical note

Green Open Access added to TU Delft Institutional Repository ‘You share, we take care!’ – Taverne project https://www.openaccess.nl/en/you-share-we-take-care
Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.

Keywords

  • Composites
  • Floating node method
  • Fracture
  • Mesh superposition technique
  • Multiscale modelling

Fingerprint

Dive into the research topics of 'A polymorphic element formulation towards multiscale modelling of composite structures'. Together they form a unique fingerprint.

Cite this