Numerous studies have drawn attention to the complexities related to the retrievals of tropospheric NO2 columns derived from satellite UltraViolet-Visible (UV-Vis) measurements in the presence of aerosols. Correction for aerosol effects will remain a challenge for the next generation of air quality satellite instruments such as TROPOMI on Sentinel-5 Precursor, Sentinel-4 and Sentinel-5. The Ozone Monitoring Instrument (OMI) instrument has provided daily global measurements of tropospheric NO2 for more than a decade. However, aerosols are not explicitly taken into account in the current operational OMI tropospheric NO2 retrieval chain (DOMINO v2 [Boersma et al., 2011]). Our study analyses 2 approaches for an operational aerosol correction, based on the use of the O2-O2 477 nm band. The 1st approach is the cloud-model based aerosol correction, also named “implicit aerosol correction”, and already used in the operational chain. The OMI O2-O2 cloud retrieval algorithm, based on the Differential Optical Absorption Spectroscopy (DOAS) approach, is applied both to cloudy and to cloud-free scenes with aerosols present. Perturbation of the OMI cloud retrievals over scenes dominated by aerosols has been observed in recent studies led by [Castellanos et al., 2015; Lin et al., 2015; Lin et al., 2014]. We investigated the causes of these perturbations by: (1) confronting the OMI tropospheric NO2, clouds and MODIS AQUA aerosol products; (2) characterizing the key drivers of the aerosol net effects, compared to a signal from clouds, in the UV-Vis spectra. This study has focused on large industrialised areas like East-China, over cloud-free scenes. One of the key findings is the limitation due to the coarse sampling of the employed cloud Look-Up Table (LUT) to convert the results of the applied DOAS fit into effective cloud fraction and pressure. This leads to an underestimation of tropospheric NO2 amount in cases of particles located at elevated altitude. A higher sampling of the variation of O2-O2 SCD and continuum reflectance as a function of effective cloud parameters in case of low effective cloud fraction values is requested for applying an aerosol correction. The updates of the OMI O2-O2 cloud algorithm, based on the scheduled new OMI cloud LUT, will be presented in terms of impacts of the effective cloud retrievals and reduced biases of tropospheric NO2 columns over cloud-free scenes dominated by aerosols in China. A 2nd approach is investigated, assuming a more explicit aerosol correction. Previous analyses pointed out that the O2-O2 spectra contain information about aerosols: the continuum reflectance is primarily constrained by the Aerosol Optical thickness (AOT) while the O2-O2 Slant Column Density (SCD) mostly results from the combination of AOT and aerosols altitude. We have developed a first prototype algorithm allowing to retrieve information about AOT and aerosol altitude from the O2-O2 DOAS fit. We will discuss preliminary sensitivities and the potential accuracy of the associated explicit aerosol correction, without the use of effective cloud parameters.
Original languageEnglish
Article numberEGU2016-13234
Pages (from-to)1-1
Number of pages1
JournalGeophysical Research Abstracts (online)
Volume18
Publication statusPublished - 2016
EventEGU General Assembly 2016 - Austria Center Vienna, Vienna, Austria
Duration: 17 Apr 201622 Apr 2016
http://egu2016.eu/

ID: 4871982