Documents

DOI

We present a design for a novel mobile sensing system (AMSense) that uses vehicles as mobile sensing nodes in a network to capture spatiotemporal properties of pedestrians and cyclists (active modes) in urban environments. In this dynamic, multi-sensor approach, real-time data, algorithms, and models are fused to estimate presence, positions and movements of active modes with information generated by a fleet of mobile sensing platforms. AMSense offers a number of advantages over the traditional methods using stationary sensor systems or more recently crowd-sourced data from mobile and wearable devices, as it represents a scalable system that provides answers to spatiotemporal resolution, intrusiveness, and dynamic network conditions. In this paper, we motivate the need and show the potential of such a sensing paradigm, which supports a host of new research and application development, and illustrate this with a practical urban sensing example. We propose a first design, elaborate on a variety of requirements along with functional challenges, and outline the research to be performed with the generated data.
Original languageEnglish
Number of pages12
JournalIEEE Intelligent Transportation Systems Magazine
DOIs
Publication statusE-pub ahead of print - 2020

ID: 66572338