We present a conceptual model for the diurnal cycle of the dry atmospheric
boundary layer (ABL). It may serve as a framework for future numerical studies on the transitional dynamics that characterize the ABL over land. The
conceptual model enables to define expressions for relevant physical scales
as a function of the most prominent forcing parameters and the low degree
of complexity facilitates a dimensionless description. This is useful to help
generalize boundary-layer dynamics that occur on a diurnal timescale. Further, the model’s application for numerical studies is illustrated herein with
two examples: A single-column-model study which assesses the effect of
wind forcing on the main characteristics of the diurnal cycle, and a large-eddy-simulation study on the daily evolution of turbulence under weak-wind-
forcing conditions. The results from these studies sketch the general evolution
of the present set of diurnal-cycle systems in more detail. We discuss how the
setups are able to reproduce well-known dynamical features of the ABL and
also highlight limitations, where the simple conceptual system is unable to describe realistic ABL behavior. We conclude that the present conceptual model
has an interesting balance between model-system complexity and physical realism, such that it is useful for future, idealized, studies on the diurnal cycle of the ABL.
Original languageEnglish
Pages (from-to)3717-3736
Number of pages20
JournalJournal of the Atmospheric Sciences
Publication statusPublished - 2019

    Research areas

  • Atmosphere-land interaction, Diurnal effects, Single column models, Large eddy simulations, Boundary conditions, Boundary layer

ID: 57109712