Renewable power sources such as wind and solar are inflexible in their energy production, which requires demand to rapidly follow supply in order to maintain energy balance. Promising controllable demands are air-conditioners and heat pumps which use electric energy to maintain a temperature at a setpoint. Such Thermostatically Controlled Loads (TCLs) have been shown to be able to follow a power curve using reactive control. In this paper we investigate the use of planning under uncertainty to pro-actively control an aggregation of TCLs to overcome temporary grid imbalance. We present a formal definition of the planning problem under consideration, which we model using the Multi-Agent Markov Decision Process (MMDP) framework. Since we are dealing with hundreds of agents, solving the resulting MMDPs directly is intractable. Instead, we propose to decompose the problem by decoupling the interactions through arbitrage. Decomposition of the problem means relaxing the joint power consumption constraint, which means that joining the plans together can cause overconsumption. Arbitrage acts as a conflict resolution mechanism during policy execution, using the future expected value of policies to determine which TCLs should receive the available energy. We experimentally compare several methods to plan with arbitrage, and conclude that a best response-like mechanism is a scalable approach that returns near-optimal solutions.

Original languageEnglish
Title of host publicationProceedings of the National Conference on Artificial Intelligence
PublisherAmerican Association for Artificial Intelligence (AAAI)
Pages615-621
Number of pages7
Volume1
ISBN (Electronic)978-157735699-8
StatePublished - 2015
Event29th AAAI Conference on Artificial Intelligence, AAAI 2015 and the 27th Innovative Applications of Artificial Intelligence Conference, IAAI 2015 - Austin, United States
Duration: 25 Jan 201530 Jan 2015

Conference

Conference29th AAAI Conference on Artificial Intelligence, AAAI 2015 and the 27th Innovative Applications of Artificial Intelligence Conference, IAAI 2015
CountryUnited States
CityAustin
Period25/01/1530/01/15

    Research areas

  • Air conditioning, Artificial intelligence, Markov processes, Multi agent systems

ID: 11310950