A challenge in developing an in-depth understanding of the crack growth resistance of Additively Manufactured materials is the fact that their mechanical properties have been shown to be both process and part-geometry dependent. Up to now, no studies have investigated the influence of off-axis (beyond the three orthogonal build orientations) orientations on the fatigue crack growth behaviour of selective laser melted Ti-6Al-4V. Furthermore, the widespread use of compact tension specimens for investigating the material behaviour generates data more suitable for plane-strain conditions, rather than the plane-stress state which is more applicable to many lightweight aerospace structures. To address this gap in knowledge, a comprehensive study was carried out to investigate the influence of off-axis build direction in thin SLM Ti-6Al-4V plates, with a focus on the influence of columnar grain orientation on the fatigue crack growth behaviour. It was found that although a macroscopic columnar grain structure is visible on the specimens, it had no discernible influence on the crack growth resistance when the specimen had undergone a stress relieving or HIP heat treatment.

Original languageEnglish
Pages (from-to)344-354
Number of pages11
JournalInternational Journal of Fatigue
Volume116
DOIs
Publication statusPublished - 1 Nov 2018

    Research areas

  • Additive manufacturing, Anisotropy, Fatigue crack growth, Selective laser melting, Titanium

ID: 47331639