Computational modeling of therapy on pancreatic cancer in its early stages

Jiao Chen*, Daphne Weihs, Fred J. Vermolen

*Corresponding author for this work

Research output: Contribution to journalArticleScientificpeer-review

10 Citations (Scopus)
78 Downloads (Pure)

Abstract

More than eighty percent of pancreatic cancer involves ductal adenocarcinoma with an abundant desmoplastic extracellular matrix surrounding the solid tumor entity. This aberrant tumor microenvironment facilitates a strong resistance of pancreatic cancer to medication. Although various therapeutic strategies have been reported to be effective in mice with pancreatic cancer, they still need to be tested quantitatively in wider animal-based experiments before being applied as therapies. To aid the design of experiments, we develop a cell-based mathematical model to describe cancer progression under therapy with a specific application to pancreatic cancer. The displacement of cells is simulated by solving a large system of stochastic differential equations with the Euler–Maruyama method. We consider treatment with the PEGylated drug PEGPH20 that breaks down hyaluronan in desmoplastic stroma followed by administration of the chemotherapy drug gemcitabine to inhibit the proliferation of cancer cells. Modeling the effects of PEGPH20 + gemcitabine concentrations is based on Green’s fundamental solutions of the reaction–diffusion equation. Moreover, Monte Carlo simulations are performed to quantitatively investigate uncertainties in the input parameters as well as predictions for the likelihood of success of cancer therapy. Our simplified model is able to simulate cancer progression and evaluate treatments to inhibit the progression of cancer.

Original languageEnglish
Pages (from-to)427-444
Number of pages18
JournalBiomechanics and Modeling in Mechanobiology
Volume19 (2020)
Issue number2
DOIs
Publication statusPublished - 2019

Keywords

  • Cancer therapy
  • Cell migration
  • Mathematical modeling
  • Monte Carlo simulations
  • Pancreatic cancer

Fingerprint

Dive into the research topics of 'Computational modeling of therapy on pancreatic cancer in its early stages'. Together they form a unique fingerprint.

Cite this