Documents

  • btz180

    Final published version, 6 MB, PDF-document

DOI

Motivation: High-dimensional mass cytometry (CyTOF) allows the simultaneous measurement of multiple cellular markers at single-cell level, providing a comprehensive view of cell compositions.
However, the power of CyTOF to explore the full heterogeneity of a biological sample at the singlecell level is currently limited by the number of markers measured simultaneously on a single panel.
Results: To extend the number of markers per cell, we propose an in silico method to integrate CyTOF datasets measured using multiple panels that share a set of markers. Additionally, we present an approach to select the most informative markers from an existing CyTOF dataset to be used as a shared marker set between panels. We demonstrate the feasibility of our methods by
evaluating the quality of clustering and neighborhood preservation of the integrated dataset, on two public CyTOF datasets. We illustrate that by computationally extending the number of markers
we can further untangle the heterogeneity of mass cytometry data, including rare cell-population detection.
Original languageEnglish
Pages (from-to)1-9
Number of pages9
JournalBioinformatics
Volumebtzl 180
DOIs
Publication statusE-pub ahead of print - 2019

ID: 56848237