Development and prototyping of an integrated 3D-printed façade for thermal regulation in complex geometries

Valentini Sarakinioti, Thaleia Konstantinou, Michela Turrin, Martin Tenpierik, R.C.G.M. Loonen, M.L. de Klijn-Chevalerias, Ulrich Knaack

Research output: Contribution to journalArticleScientificpeer-review

16 Citations (Scopus)
70 Downloads (Pure)

Abstract

Currently, several research projects investigate Additive Manufacturing (AM) technology as possible construction method for future buildings. AM methods have some advantages over other production processes, such as great freedom of form, shape complexity, scale and material use. These characteristics are relevant for façade applications, which demand the integration of several functions. Given the established capacity of AM to generate complex geometries, most existing research focuses on mechanical material properties and mainly in relation to the load-bearing capacity and the construction system. The integration of additional aspects is often achieved with post processing and the use of multiple materials. Research is needed to investigate properties for insulation, thermal storage and energy harvesting, combined in one component and one production technology.

To this end, the research project “SPONG3D” aimed at developing a 3D-printed façade panel that integrates insulating properties with heat storage in a complex, mono-material geometry. The present paper gives an overview of the panel development process, including aspects of material selection, printing process, structural properties, energy performance, and thermal heat storage. The development process was guided by experiments and simulations and resulted in the design and manufacturing of a full-scale façade element prototype using FDM printing with PETG. The project proved the possibility of functions integration in 3D-printed façades, but also highlighted the limitations and the need for further developments.
Original languageEnglish
Pages (from-to)29-40
Number of pages12
JournalJournal of Facade Design and Engineering
Volume6
Issue number2
DOIs
Publication statusPublished - 2018

Keywords

  • additive manufacturing
  • 3d-printing
  • PETG
  • heat storage
  • thermal insulation
  • façade module

Fingerprint

Dive into the research topics of 'Development and prototyping of an integrated 3D-printed façade for thermal regulation in complex geometries'. Together they form a unique fingerprint.

Cite this