Standard

Does haptic steering guidance instigate speeding? A driving simulator study into causes and remedies. / Melman, Timo; de Winter, Joost; Abbink, David.

In: Accident Analysis & Prevention, Vol. 98, 2017, p. 372–387.

Research output: Contribution to journalArticleScientificpeer-review

Harvard

APA

Vancouver

Author

BibTeX

@article{c60683fa827e4a76a3355f1f8090c22e,
title = "Does haptic steering guidance instigate speeding? A driving simulator study into causes and remedies",
abstract = "An important issue in road traffic safety is that drivers show adverse behavioral adaptation (BA) to driver assistance systems. Haptic steering guidance is an upcoming assistance system which facilitates lanekeeping performance while keeping drivers in the loop, and which may be particularly prone to BA.Thus far, experiments on haptic steering guidance have measured driver performance while the vehicle speed was kept constant. The aim of the present driving simulator study was to examine whether haptic steering guidance causes BA in the form of speeding, and to evaluate two types of haptic steering guidance designed not to suffer from BA. Twenty-four participants drove a 1.8 m wide car for 13.9 km on a curved road, with cones demarcating a single 2.2 m narrow lane. Participants completed four conditions in a counterbalanced design: no guidance (Manual), continuous haptic guidance (Cont), continuous guidancethat linearly reduced feedback gains from full guidance at 125 km/h towards manual control at 130 km/h and above (ContRF), and haptic guidance provided only when the predicted lateral position was outside a lateral bandwidth (Band). Participants were familiarized with each condition prior to the experimentalruns and were instructed to drive as they normally would while minimizing the number of cone hits. Compared to Manual, the Cont condition yielded a significantly higher driving speed (on average by 7 km/h), whereas ContRF and Band did not. All three guidance conditions yielded better lane-keeping performance than Manual, whereas Cont and ContRF yielded lower self-reported workload than Manual.In conclusion, continuous steering guidance entices drivers to increase their speed, thereby diminishing its potential safety benefits. It is possible to prevent BA while retaining safety benefits by making a design adjustment either in lateral (Band) or in longitudinal (ContRF) direction.",
keywords = "Behavioral adaptation, Haptic steering guidance, Human-automation interaction, Driving simulator",
author = "Timo Melman and {de Winter}, Joost and David Abbink",
note = "Green Open Access added to TU Delft Institutional Repository {\textquoteleft}You share, we take care!{\textquoteright} – Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.",
year = "2017",
doi = "10.1016/j.aap.2016.10.016",
language = "English",
volume = "98",
pages = "372–387",
journal = "Accident Analysis & Prevention",
issn = "0001-4575",
publisher = "Elsevier",

}

RIS

TY - JOUR

T1 - Does haptic steering guidance instigate speeding? A driving simulator study into causes and remedies

AU - Melman, Timo

AU - de Winter, Joost

AU - Abbink, David

N1 - Green Open Access added to TU Delft Institutional Repository ‘You share, we take care!’ – Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.

PY - 2017

Y1 - 2017

N2 - An important issue in road traffic safety is that drivers show adverse behavioral adaptation (BA) to driver assistance systems. Haptic steering guidance is an upcoming assistance system which facilitates lanekeeping performance while keeping drivers in the loop, and which may be particularly prone to BA.Thus far, experiments on haptic steering guidance have measured driver performance while the vehicle speed was kept constant. The aim of the present driving simulator study was to examine whether haptic steering guidance causes BA in the form of speeding, and to evaluate two types of haptic steering guidance designed not to suffer from BA. Twenty-four participants drove a 1.8 m wide car for 13.9 km on a curved road, with cones demarcating a single 2.2 m narrow lane. Participants completed four conditions in a counterbalanced design: no guidance (Manual), continuous haptic guidance (Cont), continuous guidancethat linearly reduced feedback gains from full guidance at 125 km/h towards manual control at 130 km/h and above (ContRF), and haptic guidance provided only when the predicted lateral position was outside a lateral bandwidth (Band). Participants were familiarized with each condition prior to the experimentalruns and were instructed to drive as they normally would while minimizing the number of cone hits. Compared to Manual, the Cont condition yielded a significantly higher driving speed (on average by 7 km/h), whereas ContRF and Band did not. All three guidance conditions yielded better lane-keeping performance than Manual, whereas Cont and ContRF yielded lower self-reported workload than Manual.In conclusion, continuous steering guidance entices drivers to increase their speed, thereby diminishing its potential safety benefits. It is possible to prevent BA while retaining safety benefits by making a design adjustment either in lateral (Band) or in longitudinal (ContRF) direction.

AB - An important issue in road traffic safety is that drivers show adverse behavioral adaptation (BA) to driver assistance systems. Haptic steering guidance is an upcoming assistance system which facilitates lanekeeping performance while keeping drivers in the loop, and which may be particularly prone to BA.Thus far, experiments on haptic steering guidance have measured driver performance while the vehicle speed was kept constant. The aim of the present driving simulator study was to examine whether haptic steering guidance causes BA in the form of speeding, and to evaluate two types of haptic steering guidance designed not to suffer from BA. Twenty-four participants drove a 1.8 m wide car for 13.9 km on a curved road, with cones demarcating a single 2.2 m narrow lane. Participants completed four conditions in a counterbalanced design: no guidance (Manual), continuous haptic guidance (Cont), continuous guidancethat linearly reduced feedback gains from full guidance at 125 km/h towards manual control at 130 km/h and above (ContRF), and haptic guidance provided only when the predicted lateral position was outside a lateral bandwidth (Band). Participants were familiarized with each condition prior to the experimentalruns and were instructed to drive as they normally would while minimizing the number of cone hits. Compared to Manual, the Cont condition yielded a significantly higher driving speed (on average by 7 km/h), whereas ContRF and Band did not. All three guidance conditions yielded better lane-keeping performance than Manual, whereas Cont and ContRF yielded lower self-reported workload than Manual.In conclusion, continuous steering guidance entices drivers to increase their speed, thereby diminishing its potential safety benefits. It is possible to prevent BA while retaining safety benefits by making a design adjustment either in lateral (Band) or in longitudinal (ContRF) direction.

KW - Behavioral adaptation

KW - Haptic steering guidance

KW - Human-automation interaction

KW - Driving simulator

U2 - 10.1016/j.aap.2016.10.016

DO - 10.1016/j.aap.2016.10.016

M3 - Article

VL - 98

SP - 372

EP - 387

JO - Accident Analysis & Prevention

JF - Accident Analysis & Prevention

SN - 0001-4575

ER -

ID: 8784516