In the electronics industry epoxy molding compounds, underfills and adhesives are used for the packaging of electronic components. These materials are applied in liquid form, cured at elevated temperatures and then cooled down to room temperature. During these processing steps residual stresses are built up resulting from both cure and thermal shrinkage. In order to minimize these stresses inorganic fillers are added. These fillers have several opposing effects on the residual stresses because they decrease the cure shrinkage and thermal contraction but increase the modulus below and above the glass transition temperature. In this paper an extensive study on the cure-dependent rubbery moduli of a series of silica spheres filled epoxy resins is carried out both experimentally and theoretically. Low frequency dynamic mechanical analysis (DMA) was used to measure the rubbery modulus build-up during cure. A model based on scaling analysis was applied to describe the evolution of the rubbery shear modulus. The effect of the filler percentage on the rubbery shear and bulk moduli as well as the coefficients of thermal expansion were measured and compared with models from the theory of particulate-filled composites.
Original languageUndefined/Unknown
Pages (from-to)233-239
Number of pages7
JournalMicroelectronics Reliability
Publication statusPublished - 2007

    Research areas

  • academic journal papers, CWTS JFIS < 0.75

ID: 3938448