• Gerard Snaauw
  • Dong Gong
  • Gabriel Maicas
  • Anton van den Hengel
  • Wiro Niessen
  • Johan Verjans
  • Gustavo Carneiro
Cardiac magnetic resonance (CMR) is used extensively in the diagnosis and management of cardiovascular disease. Deep learning methods have proven to deliver segmentation results comparable tohuman experts in CMR imaging, but there have been no convincing results for the problem of end-to-end segmentation and diagnosis from CMR. This is in part due to a lack of sufficiently large datasets required to train robust diagnosis models. In this paper, we proposea learning method to train diagnosis models, where our approach isdesigned to work with relatively small datasets. In particular, the optimisation loss is based on multi-task learning that jointly trains for the tasks of segmentation and diagnosis classification. We hypothesize that segmentation has a regularizing effect on the learning of features relevant for diagnosis. Using the 100 training and 50 testingsamples available from the Automated Cardiac Diagnosis Challenge (ACDC) dataset, which has a balanced distribution of 5 cardiac diagnoses, we observe a reduction of the classification error from 32% to 22%, and a faster convergence compared to a baseline without segmentation. To the best of our knowledge, this is the best diagnosis results from CMR using an end-to-end diagnosis and segmentation learning method.
Original languageEnglish
Title of host publicationEND-TO-END DIAGNOSIS AND SEGMENTATION LEARNING FROM CARDIAC MAGNETIC RESONANCE IMAGING
Publication statusPublished - 2018

ID: 47535739