Engineering atomic-level complexity in high-entropy and complex concentrated alloys

Hyun Seok Oh, Kim Sang Jun, Khorgolkhuu Odbadrakh, Wook Ha Ryu, Kook Noh Yoon, Sai Mu, Fritz Körmann, Yuji Ikeda, Cemal Cem Tasan, Dierk Raabe, Takeshi Egami, Eun Soo Park*

*Corresponding author for this work

    Research output: Contribution to journalArticleScientificpeer-review

    180 Citations (Scopus)
    139 Downloads (Pure)

    Abstract

    Quantitative and well-targeted design of modern alloys is extremely challenging due to their immense compositional space. When considering only 50 elements for compositional blending the number of possible alloys is practically infinite, as is the associated unexplored property realm. In this paper, we present a simple property-targeted quantitative design approach for atomic-level complexity in complex concentrated and high-entropy alloys, based on quantum-mechanically derived atomic-level pressure approximation. It allows identification of the best suited element mix for high solid-solution strengthening using the simple electronegativity difference among the constituent elements. This approach can be used for designing alloys with customized properties, such as a simple binary NiV solid solution whose yield strength exceeds that of the Cantor high-entropy alloy by nearly a factor of two. This study provides general design rules that enable effective utilization of atomic level information to reduce the immense degrees of freedom in compositional space without sacrificing physics-related plausibility.

    Original languageEnglish
    Article number2090
    Number of pages8
    JournalNature Communications
    Volume10
    Issue number1
    DOIs
    Publication statusPublished - 2019

    Fingerprint

    Dive into the research topics of 'Engineering atomic-level complexity in high-entropy and complex concentrated alloys'. Together they form a unique fingerprint.

    Cite this