EPR spectroscopy of complex biological iron–sulfur systems

Wilfred R. Hagen*

*Corresponding author for this work

Research output: Contribution to journalArticleScientificpeer-review

21 Citations (Scopus)
46 Downloads (Pure)

Abstract

From the very first discovery of biological iron–sulfur clusters with EPR, the spectroscopy has been used to study not only purified proteins but also complex systems such as respiratory complexes, membrane particles and, later, whole cells. In recent times, the emphasis of iron–sulfur biochemistry has moved from characterization of individual proteins to the systems biology of iron–sulfur biosynthesis, regulation, degradation, and implications for human health. Although this move would suggest a blossoming of System-EPR as a specific, non-invasive monitor of Fe/S (dys)homeostasis in whole cells, a review of the literature reveals limited success possibly due to technical difficulties in adherence to EPR spectroscopic and biochemical standards. In an attempt to boost application of System-EPR the required boundary conditions and their practical applications are explicitly and comprehensively formulated.

Original languageEnglish
Pages (from-to)1-12
Number of pages12
JournalJournal of Biological Inorganic Chemistry
DOIs
Publication statusPublished - 2018

Keywords

  • EPR
  • Iron–sulfur
  • Systems biology

Fingerprint

Dive into the research topics of 'EPR spectroscopy of complex biological iron–sulfur systems'. Together they form a unique fingerprint.

Cite this