Evaluating the Impact of Ionizing Particles on FinFET -based SRAMs with Weak Resistive Defects

Thiago Copetti, Guilherme Cardoso Medeiros, Mottaqiallah Taouil, Said Hamdioui, Leticia Bolzani Poehls, Tiago Balen

Research output: Chapter in Book/Conference proceedings/Edited volumeConference contributionScientificpeer-review

6 Citations (Scopus)
54 Downloads (Pure)

Abstract

Fin Field-Effect Transistor (FinFET) technology enables the continuous downscaling of Integrated Circuits (ICs), using the Complementary Metal-Oxide Semiconductor (CMOS) technology in accordance with the More Moore domain. Despite demonstrating improvements on short channel effect and overcoming the growing leakage problem of planar CMOS technology, the continuity of feature size miniaturization allowed by FinFETs tends to increase sensitivity to Single Event Upsets (SEUs) caused by ionizing particles, especially in blocks with higher transistor densities as Static Random-Access Memories (SRAMs). Variation during the manufacturing process has introduced different types of defects that directly affect the SRAM's reliability, such as weak resistive defects. As some of these defects may cause dynamic faults, which require more than one consecutive operation to sensitize the fault at the logic level, traditional test approaches may fail to detect them and test escapes can occur. These undetected faults associated with weak resistive defects may affect the FinFET -based SRAM reliability during the lifetime. In this context, this paper proposes to investigate the impact of ionizing particles on the reliability of FinFET -based SRAMs in the presence of weak resistive defects. Firstly, a TCAD model of a FinFET-based SRAM cell is proposed in order to allow the evaluation of the ionizing particle's impact. Then, SPICE simulations are performed considering the current pulse parameters obtained with TCAD. In this step, weak resistive defects are injected into the FinFET-based SRAM cell. Results show that weak defects may have either a positive or negative influence on the cell reliability against SEUs caused by ionizing particles.

Original languageEnglish
Title of host publication21st IEEE Latin-American Test Symposium, LATS 2020
PublisherInstitute of Electrical and Electronics Engineers (IEEE)
Number of pages6
ISBN (Electronic)9781728187310
DOIs
Publication statusPublished - 1 Mar 2020
Event21st IEEE Latin-American Test Symposium, LATS 2020 - Jatiuca, Maceio, Brazil
Duration: 30 Mar 20202 Apr 2020

Conference

Conference21st IEEE Latin-American Test Symposium, LATS 2020
Country/TerritoryBrazil
CityJatiuca, Maceio
Period30/03/202/04/20

Keywords

  • FinFET
  • Reliability
  • Resistive Defects
  • SEU
  • Single Event Transient Modeling
  • SRAMs
  • TCAD

Fingerprint

Dive into the research topics of 'Evaluating the Impact of Ionizing Particles on FinFET -based SRAMs with Weak Resistive Defects'. Together they form a unique fingerprint.

Cite this