Each day, airlines face disturbances that disrupt their carefully planned operations. Events like adverse weather conditions, sick crew members, or damaged aircraft often result in delays in the airline's schedule. An airline recovers from such disruptions through the role played by its Airline Operations Control (AOC). A Multi-Agent System (MAS) approach to airline disruption management was recently proposed under the acronym MASDIMA (Multi-Agent System for Disruption Management in AOC). The purpose of this paper is to evaluate this MAS supported AOC approach on its performance and its practical introduction. This is done using a scenario-based analysis to compare the MAS supported policy to human-team based AOC policies. A task-based analysis identifies how well AOC is able to cover a set of tasks using the MAS supported policy. The scenario-based analysis shows that the MAS supported AOC is able to find the optimal solution, and to do this significantly faster. The task-based analysis identified two main challenges for implementing the MAS supported AOC policy: i) to overcome the loss of experience that is caused by significantly automating humans roles in AOC, and ii) to reduce the workload for people that remain in AOC after its introduction. The paper concludes that implementing the MAS supported AOC policy leads to both better and faster resolutions, though the replacement of human roles also poses novel challenges that remain to be resolved: a potential increase in workload for the remaining human role and loss of experience in handling exceptional situations.

Original languageEnglish
Pages (from-to)108-118
Number of pages11
JournalJournal of Air Transport Management
Volume71
DOIs
Publication statusPublished - 1 Aug 2018

    Research areas

  • Airline disruption management, Airline operations control, Coordination, Multi-agent systems, Resilience

ID: 49465101