Documents

DOI

Biosynthesis of sterols, which are considered essential components of virtually all eukaryotic membranes, requires molecular oxygen. Anaerobic growth of the yeast Saccharomyces cerevisiae therefore strictly depends on sterol supplementation of synthetic growth media. Neocallimastigomycota are a group of strictly anaerobic fungi which, instead of sterols, contain the pentacyclic triterpenoid 'sterol surrogate' tetrahymanol, which is formed by cyclization of squalene. Here, we demonstrate that expression of the squalene-tetrahymanol cyclase gene TtTHC1 from the ciliate Tetrahymena thermophila enables synthesis of tetrahymanol by S. cerevisiae Moreover, expression of TtTHC1 enabled exponential growth of anaerobic S. cerevisiae cultures in sterol-free synthetic media. After deleting the ERG1 gene from a TtTHC1-expressing S. cerevisiae strain, native sterol synthesis was abolished and sustained sterol-free growth was demonstrated under anaerobic as well as aerobic conditions. Anaerobic cultures of TtTHC1-expressing S. cerevisiae on sterol-free medium showed lower specific growth rates and biomass yields than ergosterol-supplemented cultures, while their ethanol yield was higher. This study demonstrates that acquisition of a functional squalene-tetrahymanol cyclase gene offers an immediate growth advantage to S. cerevisiae under anaerobic, sterol-limited conditions and provides the basis for a metabolic engineering strategy to eliminate the oxygen requirements associated with sterol synthesis in yeasts.Importance The laboratory experiments described in this study simulate a proposed horizontal gene transfer event during the evolution of strictly anaerobic fungi. The demonstration that expression of a single heterologous gene sufficed to eliminate anaerobic sterol requirements in the model eukaryote Saccharomyces cerevisiae therefore contributes to our understanding of how sterol-independent eukaryotes evolved in anoxic environments. This study provides a proof-of-principle for a metabolic engineering strategy to eliminate sterol requirements in yeast strains that are applied in large-scale, anaerobic industrial processes. The sterol-independent yeast strains described in this study provide a valuable platform for further studies on the physiological roles and impacts of sterols and sterol surrogates in eukaryotic cells.

Original languageEnglish
JournalApplied and Environmental Microbiology
DOIs
Publication statusPublished - 19 Jun 2020

ID: 74711372