From static to dynamic anomaly detection with application to power system cyber security

Research output: Contribution to journalArticleScientificpeer-review

25 Citations (Scopus)
12 Downloads (Pure)

Abstract

Developing advanced diagnosis tools to detect cyber attacks is the key to security of power systems. It has been shown that multivariate data injection attacks can bypass bad data detection schemes typically built on static behavior of the systems, which misleads operators to disruptive decisions. In this article, we depart from the existing static viewpoint to develop a diagnosis filter that captures the dynamics signatures of such a multivariate intrusion. To this end, we introduce a dynamic residual generator approach formulated as robust optimization programs in order to detect a class of disruptive multivariate attacks that potentially remain stealthy in view of a static bad data detector. We investigate two possible desired features: (i) a non-zero transient and (ii) a non-zero steady-state behavior of the residual generator in the presence of an attack. In case (i), the problem is reformulated as a finite, but possibly non-convex, optimization program. We further develop a linear programming relaxation that improves the scalability, and as such practicality, of the diagnosis filter design. In case (ii), it turns out that the resulting robust program admits an exact convex reformulation, yielding a Nash equilibrium between the attacker and the residual generator. This assertion has an interesting implication: the proposed approach is not conservative in the sense that the additional knowledge of the worst-case attack does not improve the diagnosis performance. To illustrate our theoretical results, we implement the proposed diagnosis filter to detect multivariate attacks on the system measurements deployed to generate the so-called Automatic Generation Control signals in a three-area IEEE 39-bus system.
Original languageEnglish
Article number8846711
Pages (from-to)1584-1596
Number of pages13
JournalIEEE Transactions on Power Systems
Volume35
Issue number2
DOIs
Publication statusPublished - 2020

Bibliographical note

Green Open Access added to TU Delft Institutional Repository ‘You share, we take care!’ – Taverne project https://www.openaccess.nl/en/you-share-we-take-care
Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.

Keywords

  • Stealthy multivariate attacks
  • diagnosis filter
  • robust optimization
  • Nash equilibrium

Fingerprint

Dive into the research topics of 'From static to dynamic anomaly detection with application to power system cyber security'. Together they form a unique fingerprint.

Cite this