OBJECTIVES: To provide a systematic overview of the literature assessing the value of haptic and force feedback in current simulators teaching laparoscopic surgical skills. DATA SOURCES: The databases of Pubmed, Cochrane, Embase, Web of Science, and Google Scholar were searched to retrieve relevant studies published until January 31st, 2017. The search included laparoscopic surgery, simulation, and haptic or force feedback and all relevant synonyms. METHODS: Duplicates were removed, and titles and abstracts screened. The remaining articles were subsequently screened full text and included in this review if they followed the inclusion criteria. A total of 2 types of feedback have been analyzed and will be discussed separately: haptic- and force feedback. RESULTS: A total of 4023 articles were found, of which 87 could be used in this review. A descriptive analysis of the data is provided. Results of the added value of haptic interface devices in virtual reality are variable. Haptic feedback is most important for more complex tasks. The interface devices do not require the highest level of fidelity. Haptic feedback leads to a shorter learning curve with a steadier upward trend. Concerning force feedback, force parameters are measured through force sensing systems in the instrument and/or the environment. These parameters, especially in combination with motion parameters, provide box trainers with an objective evaluation of laparoscopic skills. Feedback of force-use both real time and postpractice has been shown to improve training. CONCLUSIONS: Haptic feedback is added to virtual reality simulators to increase the fidelity and thereby improve training effect. Variable results have been found from adding haptic feedback. It is most important for more complex tasks, but results in only minor improvements for novice surgeons. Force parameters and force feedback in box trainers have been shown to improve training results.

Original languageEnglish
Pages (from-to)242-261
JournalJournal of Surgical Education
Volume76
Issue number1
DOIs
Publication statusPublished - 2019

    Research areas

  • Force feedback, Force sensing, Haptic feedback, Laparoscopy, Medical Knowledge, Patient Care, Practice-Based Learning, Simulation, Training

ID: 46118368