Identifying the Role of Primary and Secondary Interactions on the Mechanical Properties and Healing of Densely Branched Polyimides

Arijana Susa, Anton Mordvinkin, Kay Saalwächter, Sybrand Van Der Zwaag, Santiago J. Garcia*

*Corresponding author for this work

Research output: Contribution to journalArticleScientificpeer-review

22 Citations (Scopus)
85 Downloads (Pure)

Abstract

We present a systematic study of the role of the aromatic dianhydride structure on the self-healing behavior of dimer diamine-based polyimides. By means of solid-state NMR and rheology, we studied the molecular and microscale dynamics of four polyimides comprising the same aliphatic branched diamine yet with variable dianhydride rigidities and correlated these to their macroscopic healing kinetics measured by tensile testing. Following the two-step kinetics of the healing process, we were able to differentiate and quantify the extent of mechanical strength recovery in each of the healing stages separately. Moreover, the detailed rheology and solid-state NMR allowed us to shed light on the role of the aromatic interactions and branches on the mechanical properties and mechanical integrity during macroscopic healing. The study reveals the relevance and interplay of primary and secondary interactions in the development of non-cross-linked strong and healing polymers able to maintain mechanical integrity during healing.

Original languageEnglish
Number of pages13
JournalMacromolecules
DOIs
Publication statusE-pub ahead of print - 15 Oct 2018

Fingerprint

Dive into the research topics of 'Identifying the Role of Primary and Secondary Interactions on the Mechanical Properties and Healing of Densely Branched Polyimides'. Together they form a unique fingerprint.

Cite this