Improving printability of limestone-calcined clay-based cementitious materials by using viscosity-modifying admixture

Research output: Contribution to journalArticleScientificpeer-review

142 Citations (Scopus)
122 Downloads (Pure)

Abstract

In 3D concrete printing (3DCP), it is necessary to meet contradicting rheological requirements: high fluidity during pumping and extrusion, and high stability and viscosity at rest to build the layered structure. In this paper, the impact of the hydroxypropyl methylcellulose (HPMC)-based viscosity-modifying admixture (VMA) on the 3D printability and mechanical performance of a limestone and calcined clay based cementitious material is investigated. A combination of VMA and superplasticizer was used for that purpose. In this case, controlling the competitive effects between VMA and superplasticizer becomes critical. The main strategy for 3D printing in this study was to add an optimal dosage of VMA in the solid suspension that was already mixed with water and superplasticizer. A lab-scale 3DCP setup was developed and demonstrated as well. A series of tests was performed to characterize the effects of VMA on flowability, extrudability, open time, buildability, green strength, hydration, compressive strength, and air void content and distribution. Experiments performed in this study showed that the mixture containing 0.24% (of the binder mass) of VMA exhibited satisfactory 3D printability and optimal mechanical performance. Finally, the results, limitations, and perspectives of the current research were discussed.
Original languageEnglish
Article number106040
Number of pages18
JournalCement and Concrete Research
Volume132
DOIs
Publication statusPublished - 2020

Keywords

  • 3D concrete printing
  • Limestone and calcined clay
  • Mechanical performance
  • Sustainability
  • Viscosity-modifying admixture

Fingerprint

Dive into the research topics of 'Improving printability of limestone-calcined clay-based cementitious materials by using viscosity-modifying admixture'. Together they form a unique fingerprint.

Cite this