The performance of a self-healing Thermal Barrier Coating (TBC) containing dispersed healing particles depends crucially on the mismatch in thermomechanical properties between the healing particles and the TBC matrix. The present work systematically investigates this phenomenon based on numerical simulations using cohesive element-based finite element analysis. The effect of the mismatch in Coefficient of Thermal Expansion (CTE) and fracture strength between the healing particles and the matrix on the fracture characteristics is quantified in detail. Unit cell-based analyses are conducted on a representative self-healing TBC system under a thermal loading step typically experienced by TBC systems in jet turbines. Two different simulation setups are considered within the TBC unit cell namely (i) a single pair of healing particles and (ii) a randomly distributed array of healing particles. The results of the simulations are reported in terms of the fracture pattern, crack initiation temperature and crack length for various CTE mismatch ratios. Correlations are established between the results obtained from the two simulation setups essentially revealing the effect of spatial distribution and proximity of healing particles on the fracture pattern. The results obtained from the analyses can be utilised to achieve a robust design of a self-healing TBC system.
Original languageEnglish
Pages (from-to)75-86
Number of pages12
JournalMaterials and Design
Publication statusPublished - 5 Nov 2018

    Research areas

  • Cohesive elements, Fracture mechanics, Healing particles, Thermal barrier coatings, Thermal mismatch

ID: 45896106