Nature of the Lamb shift in weakly anharmonic atoms: From normal-mode splitting to quantum fluctuations

Mario F. Gely, Gary A. Steele, Daniel Bothner

Research output: Contribution to journalArticleScientificpeer-review

9 Citations (Scopus)
128 Downloads (Pure)

Abstract

When a two-level system (TLS) is coupled to an electromagnetic resonator, its transition frequency changes in response to the quantum vacuum fluctuations of the electromagnetic field, a phenomenon known as the Lamb shift. Remarkably, by replacing the TLS by a harmonic oscillator, normal-mode splitting leads to a quantitatively similar shift, without taking quantum fluctuations into account. In a weakly anharmonic system, lying in between the harmonic oscillator and a TLS, the origins of such shifts can be unclear. An example of this is the dispersive shift of a transmon qubit in circuit quantum electrodynamics (QED). Although often referred to as a Lamb shift, the dispersive shift observed in spectroscopy in circuit QED could contain a significant contribution from normal-mode splitting that is not driven by quantum fluctuations, raising the question: how much of this shift is quantum in origin? Here we treat normal-mode splitting separately from shifts induced by quantum vacuum fluctuations in the Hamiltonian of a weakly anharmonic system, providing a framework for understanding the extent to which observed frequency shifts can be attributed to quantum fluctuations.

Original languageEnglish
Article number053808
Number of pages6
JournalPhysical Review A
Volume98
Issue number5
DOIs
Publication statusPublished - 2018

Fingerprint

Dive into the research topics of 'Nature of the Lamb shift in weakly anharmonic atoms: From normal-mode splitting to quantum fluctuations'. Together they form a unique fingerprint.

Cite this