Near-term quantum-repeater experiments with nitrogen-vacancy centers: Overcoming the limitations of direct transmission

Filip Rozpȩdek, Raja Yehia, Kenneth Goodenough, Maximilian Ruf, Peter C. Humphreys, Ronald Hanson, Stephanie Wehner, David Elkouss

Research output: Contribution to journalArticleScientificpeer-review

80 Citations (Scopus)
198 Downloads (Pure)

Abstract

Quantum channels enable the implementation of communication tasks inaccessible to their classical counterparts. The most famous example is the distribution of secret key. However, in the absence of quantum repeaters, the rate at which these tasks can be performed is dictated by the losses in the quantum channel. In practice, channel losses have limited the reach of quantum protocols to short distances. Quantum repeaters have the potential to significantly increase the rates and reach beyond the limits of direct transmission. However, no experimental implementation has overcome the direct transmission threshold. Here, we propose three quantum repeater schemes and assess their ability to generate secret key when implemented on a setup using nitrogen-vacancy (NV) centers in diamond with near-term experimental parameters. We find that one of these schemes - the so-called single-photon scheme, requiring no quantum storage - has the ability to surpass the capacity - the highest secret-key rate achievable with direct transmission - by a factor of 7 for a distance of approximately 9.2 km with near-term parameters, establishing it as a prime candidate for the first experimental realization of a quantum repeater.

Original languageEnglish
Article number052330
Number of pages29
JournalPhysical Review A
Volume99
Issue number5
DOIs
Publication statusPublished - 2019

Fingerprint

Dive into the research topics of 'Near-term quantum-repeater experiments with nitrogen-vacancy centers: Overcoming the limitations of direct transmission'. Together they form a unique fingerprint.

Cite this