Predicting the Transition between Upper and Lower Bainite via a Gibbs Energy Balance Approach

Zenan Yang, Wei Xu*, Zhigang Yang, Chi Zhang, Hao Chen, Sybrand van der Zwaag

*Corresponding author for this work

Research output: Contribution to journalArticleScientificpeer-review

5 Citations (Scopus)

Abstract

The transition temperature between upper bainite and lower bainite is calculated with an extended Gibbs energy balance model, which is able to quantitatively describe the evolution of carbon supersaturation within bainitic ferrite sheaves during the entire thickening process. The nucleation rate of intra-lath cementite precipitation on a dislocation is calculated based on of the degree of carbon supersaturation. Upper bainite and lower bainite are thus distinguished by the effective nucleation density and therefore a numerical criterion can be set to define the transition. The model is applied to Fe-xC-1Mn/2Mn/1Mo ternary alloys. Results show that the transition temperature increases with bulk carbon content at lower carbon concentration but decreases in the higher carbon region. This prediction agrees very well with the experimental observations in Mn and Mo alloyed systems. Moreover, the highest transition temperature and the carbon content at which it occurs in the Fe-xC-2Mn system are in good agreement with reported experimental data. The inverse V shaped character of the carbon concentration-transition temperature curve indicates two opposite physical mechanisms operating at the same time. An analysis is carried out to provide an explanation.

Original languageEnglish
Number of pages9
JournalJournal of Materials Science & Technology: an international journal in the field of materials science
DOIs
Publication statusE-pub ahead of print - 2016

Keywords

  • Bainite
  • Carbon diffusion
  • Gibbs energy balance
  • Interface migration
  • Low-alloy steel

Fingerprint

Dive into the research topics of 'Predicting the Transition between Upper and Lower Bainite via a Gibbs Energy Balance Approach'. Together they form a unique fingerprint.

Cite this