For transitions of control in automated vehicles, driver monitoring systems (DMS) may need to discern task difficulty and driver preparedness. Such DMS require models that relate driving scene components, driver effort, and eye measurements. Across two sessions, 15 participants enacted receiving control within 60 randomly ordered dashcam videos (3-second duration) with variations in visible scene components: road curve angle, road surface area, road users, symbols, infrastructure, and vegetation/trees while their eyes were measured for pupil diameter, fixation duration, and saccade amplitude. The subjective measure of effort and the objective measure of saccade amplitude evidenced the highest correlations (r = 0.34 and r = 0.42, respectively) with the scene component of road curve angle. In person-specific regression analyses combining all visual scene components as predictors, average predictive correlations ranged between 0.49 and 0.58 for subjective effort and between 0.36 and 0.49 for saccade amplitude, depending on cross-validation techniques of generalization and repetition. In conclusion, the present regression equations establish quantifiable relations between visible driving scene components with both subjective effort and objective eye movement measures. In future DMS, such knowledge can help inform road-facing and driver-facing cameras to jointly establish the readiness of would-be drivers ahead of receiving control.
Original languageEnglish
Pages (from-to)187-197
JournalTransportation Research. Part F: Traffic Psychology and Behaviour
Volume68
DOIs
Publication statusPublished - 2020

    Research areas

  • Driving scenes, Eye-tracking, Workload, Driver assistance, Automated driving, Individual differences

ID: 67443584