Microspheres with high specific activities of radionuclides are very interesting for internal radiotherapy treatments. This work focuses on the formulation and characterization of inorganic microspheres with a high content of holmium and therefore a high specific radioactivity of holmium-166. Two novel formulations of inorganic microspheres were obtained by dispersing solid holmium acetylacetonate microspheres (Ho2(AcAc)3-ms) in NaH2PO4 or NaOH solutions followed by 2 h incubation at room temperature. By exchange of acetylacetonate with phosphate or hydroxyl ions, holmium phosphate microspheres (HoPO4-ms) and holmium hydroxide microspheres (Ho(OH)3-ms) were formed respectively. The inorganic microspheres had a significantly smaller diameter (28.5 ± 4.4 μm (HoPO4-ms) and 25.1 ± 3.5 μm (Ho(OH)3-ms)) than those of Ho2(AcAc)3-ms (32.6 ± 5.2 μm). The weight percentage of holmium-165 in the microspheres increased significantly from 47% (Ho2(AcAc)3-ms) to 55% (HoPO4-ms) and 73% (Ho(OH)3-ms). After preparation of both HoPO4-ms and Ho(OH)3-ms, the stable holmium-165 isotope was partly converted by neutron activation into radioactive holmium-166 to yield radioactive microspheres. High specific activities were achieved ranging from 21.7 to 59.9 MBq/mg (166HoPO4-ms) and from 28.8 to 79.9 MBq/mg (166Ho(OH)3-ms) depending on the neutron activation time. The structure of both microspheres was preserved up to neutron activations of 6 h in a thermal neutron flux of 4.72 × 1016 n m−2 s−1. After activation, both microspheres revealed excellent stability in administration fluids (saline and phosphate buffer) having less than 0.05% of holmium released after 72 h incubation. Finally, the hemocompatibility of these inorganic microspheres was evaluated and it was shown that the microspheres did cause neither hemolysis nor depletion or inhibition of the coagulation factors of the intrinsic blood coagulation pathway meaning that the microspheres have a good hemocompatibility. Overall, this work shows that radioactive inorganic microspheres with high specific activities of holmium-166 can be prepared which potentially can be used for internal radionuclide therapy.

Original languageEnglish
Article number110244
Number of pages11
JournalMaterials Science and Engineering C
Volume106
DOIs
Publication statusPublished - 2020

    Research areas

  • Hemocompatibility, Holmium hydroxide, Holmium phosphate, Microspheres, Neutron activation, Radionuclide therapy

ID: 68311562