Progression rate of backward erosion piping in laboratory experiments and reliability analysis

Research output: Chapter in Book/Conference proceedings/Edited volumeConference contributionScientificpeer-review

39 Downloads (Pure)

Abstract

Backward erosion piping is an important failure mode of dikes and dams. The time required for the backward erosion process to result in dike failure is expected to be an important factor in the safety of dikes. This holds especially in coastal and estuarine areas which are dominated by storm surge, and pipes may not fully develop during a storm. Furthermore, insight in the duration of the various piping stages can assist in developing effective emergency mitigation measures. However, the temporal development of piping is hardly studied quantitatively, as most experimental and modelling studies focus on the critical head. Also data of real breaches is generally insufficient to determine the time to failure. As a result, currently the contribution of time required for pipe growth cannot be quantified in a deterministic and reliability analysis. In this study, it is investigated how the pipe progression rate can be predicted and applied to dike reliability. The data analysis is based on a composition of 45 small, medium and large scale experiments from six studies. Advancement rates are related to the applied hydraulic gradient and soil properties using a multivariate analysis. From the analysis we derive an empirical model for the advancement rate, including a quantification of the uncertainty. This model is applied in a reliability analysis of a hypothetical coastal and riverine dike. The results of our analysis may be used to validate transient numerical piping models, perform time-dependent probabilistic dike safety analysis and support emergency response.
Original languageEnglish
Title of host publication7th International Symposium on Geotechnical Safety and Risk (ISGSR 2019)
Subtitle of host publicationState-of-the-Practice in Geotechnical Safety and Risk
EditorsJianye Ching, Dian-Qing Li, Jie Zhang
PublisherResearch Publishing
Pages769-774
Number of pages6
ISBN (Print)978-981-11-2725-0
DOIs
Publication statusPublished - 2019
EventISGSR 2019: 7th International Symposium on Geotechnical Safety and Risk - National Taiwan University of Science and Technology, Taipei, Taiwan
Duration: 11 Dec 201913 Dec 2019
http://isgsr2019.org/

Conference

ConferenceISGSR 2019: 7th International Symposium on Geotechnical Safety and Risk
Abbreviated titleISGSR 2019
Country/TerritoryTaiwan
CityTaipei
Period11/12/1913/12/19
Internet address

Bibliographical note

Green Open Access added to TU Delft Institutional Repository ‘You share, we take care!’ – Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.

Keywords

  • Piping
  • dikes
  • temporal development
  • progression rate
  • experiments
  • reliability

Fingerprint

Dive into the research topics of 'Progression rate of backward erosion piping in laboratory experiments and reliability analysis'. Together they form a unique fingerprint.

Cite this