DOI

Multiplayer Online Games (MOGs) like Defense of the Ancients and StarCraft II have attracted hundreds of millions of users who communicate, interact, and socialize with each other through gaming. In MOGs, rich social relationships emerge and can be used to improve gaming services such as match recommendation and game population retention, which are important for the user experience and the commercial value of the companies who run these MOGs. In this work, we focus on understanding social relationships in MOGs. We propose a graph model that is able to capture social relationships of a variety of types and strengths. We apply our model to real-world data collected from three MOGs that contain in total over ten years of behavioral history for millions of players and matches. We compare social relationships in MOGs across different game genres and with regular online social networks like Facebook. Taking match recommendation as an example application of our model, we propose SAMRA, a Socially Aware Match Recommendation Algorithm that takes social relationships into account. We show that our model not only improves the precision of traditional link prediction approaches, but also potentially helps players enjoy games to a higher extent.
Original languageEnglish
Article number11
Pages (from-to)11:1-11:29
Number of pages29
JournalACM Transactions on Knowledge Discovery from Data
Volume10
Issue number2
DOIs
StatePublished - Oct 2015

    Research areas

  • Design, Algorithms, Performance, Multiplayer Online Games (MOGs), social relationship, user interaction, graph model

ID: 10299436