Strain rate-dependent mechanical metamaterials

S. Janbaz*, K. Narooei, T. Van Manen, A. A. Zadpoor

*Corresponding author for this work

Research output: Contribution to journalArticleScientificpeer-review

53 Citations (Scopus)
53 Downloads (Pure)

Abstract

Mechanical metamaterials are usually designed to exhibit novel properties and functionalities that are rare or even unprecedented. What is common among most previous designs is the quasi-static nature of their mechanical behavior. Here, we introduce a previously unidentified class of strain rate-dependent mechanical metamaterials. The principal idea is to laterally attach two beams with very different levels of strain rate-dependencies to make them act as a single bi-beam. We use an analytical model and multiple computational models to explore the instability modes of such a bi-beam construct, demonstrating how different combinations of hyperelastic and viscoelastic properties of both beams, as well as purposefully introduced geometric imperfections, could be used to create robust and highly predictable strain rate-dependent behaviors of bi-beams. We then use the bi-beams to design and experimentally realize lattice structures with unique strain rate-dependent properties including switching between auxetic and conventional behaviors and negative viscoelasticity.

Original languageEnglish
Article numbereaba0616
Number of pages13
JournalScience Advances
Volume6
Issue number25
DOIs
Publication statusPublished - 2020

Fingerprint

Dive into the research topics of 'Strain rate-dependent mechanical metamaterials'. Together they form a unique fingerprint.

Cite this