Many systems are dynamic and time-varying in the real world. Discovering the vital nodes in temporal networks is more challenging than that in static networks. In this study, we proposed a temporal information gathering (TIG) process for temporal networks. The TIG-process, as a node's importance metric, can be used to do the node ranking. As a framework, the TIG-process can be applied to explore the impact of temporal information on the significance of the nodes. The key point of the TIG-process is that nodes' importance relies on the importance of its neighborhood. There are four variables: temporal information gathering depth n, temporal distance matrix D, initial information c, and weighting function f. We observed that the TIG-process can degenerate to classic metrics by a proper combination of these four variables. Furthermore, the fastest arrival distance based TIG-process (fad-tig) is performed optimally in quantifying nodes' efficiency and nodes' spreading influence. Moreover, for the fad-tig process, we can find an optimal gathering depth n that makes the TIG-process perform optimally when n is small.

Original languageEnglish
Article number033116
Pages (from-to)1-17
Number of pages17
Issue number3
Publication statusPublished - 2019

    Research areas

  • Social networks, Data mining, Graph theory, Covariance and correlation

ID: 52550270