The effect of guanidinium functionalization on the structural properties and anion affinity of polyelectrolyte multilayers

Z Cao, PI Gordiichuk, K Loos, EJR Sudholter, LCPM de Smet*

*Corresponding author for this work

    Research output: Contribution to journalArticleScientificpeer-review

    24 Citations (Scopus)

    Abstract

    Poly(allylamine hydrochloride) (PAH) is chemically functionalized with guanidinium (Gu) moieties in water at room temperature. The resulting PAH-Gu is used to prepare polyelectrolyte multilayers (PEMs) with poly(sodium 4-styrene sulfonate) (PSS) via layer-by-layer deposition. The polyelectrolyte (PE) adsorption processes are monitored real-time by optical reflectometry and a quartz crystal microbalance with dissipation monitoring (QCM-D). Compared to the reference PSS/PAH PEMs, the PSS/PAH-Gu PEMs show a lower amount of deposited PE materials, lower wet thickness, higher stability under alkaline conditions and higher rigidity. These differences are rationalized by the additional Gu-SO3 - interactions, also affecting the conformation of the PE chains in the PEM. The interactions between the PEMs and various sodium salts (NaCl, NaNO3, Na2SO4 and NaH2PO4) are also monitored using QCM-D. From the changes in the frequency, dissipation responses and supportive Reflection Absorption Infrared Spectroscopy it is concluded that Gu-functionalized PEMs absorb more H2PO4 - compared to the Gu-free reference PEMs. This can be understood by strong interactions between Gu and H2PO4 -, the differences in the anion hydration energy and the anion valency. It is anticipated that compounds like the presented Gu-functionalized PE may facilitate the further development of H2PO4 - sensors and ion separation/recovery systems.

    Original languageEnglish
    Pages (from-to)1-10
    Number of pages10
    JournalSoft Matter
    Volume12
    Issue number5
    DOIs
    Publication statusPublished - 2015

    Fingerprint

    Dive into the research topics of 'The effect of guanidinium functionalization on the structural properties and anion affinity of polyelectrolyte multilayers'. Together they form a unique fingerprint.

    Cite this