The sensitivity of the microstructure and properties to the peak temperature in an ultrafast heat treated low carbon-steel

M. A. Valdes-Tabernero*, Ankit Kumar, R. H. Petrov, M. A. Monclus, J. M. Molina-Aldareguia, I. Sabirov

*Corresponding author for this work

    Research output: Contribution to journalArticleScientificpeer-review

    6 Citations (Scopus)

    Abstract

    In this work, we investigate the sensitivity of the microstructure and mechanical properties of an ultrafast heat treated low carbon-steel to the peak temperature. In all studied cases, the steel was heated within the intercritical temperature range (i.e. between the AC1 and AC3 temperatures). Both the peak temperature and soaking time were varied, and their effect on the size, the fraction of individual microstructural constituents and their tensile mechanical response were investigated. It is shown that the increasing peak temperature and soaking time promote austenite formation and recrystallization processes in the ferritic matrix. The highest nanohardness is shown by martensitic grains, while recovered ferrite demonstrated slightly higher nanohardness compared to recrystallized ferrite. The applied heat treatment parameters have a strong effect on the nanohardness of martensite, whereas the nanohardness of ferrite microconstituents is not sensitive to variations of peak temperature and soaking time. The non-recrystallized ferrite is harder than its recrystallized counterpart due to the higher dislocation density of the former. Increasing peak temperatures promote strengthening in the material at the expense of its ductility mainly due to increased martensite fraction. The steel demonstrates enhanced strain hardening ability independently of the peak temperature. Analysis of the experimental results showed that the industrial processing window of ±10 °C may lead to some heterogeneity of the local microstructure in the ultrafast heat treated sheets. However, the latter should not have any negative effect on the overall mechanical behavior of the ultrafast heat treated steel sheets on the macro-scale.

    Original languageEnglish
    Article number138999
    Number of pages12
    JournalMaterials Science and Engineering A
    Volume776
    DOIs
    Publication statusPublished - 2020

    Keywords

    • Metals and alloys
    • Nanoindentation
    • Phase transitions
    • Scanning electron microscopy
    • SEM
    • Ultrafast heating

    Fingerprint

    Dive into the research topics of 'The sensitivity of the microstructure and properties to the peak temperature in an ultrafast heat treated low carbon-steel'. Together they form a unique fingerprint.

    Cite this