Wave-supported gravity flows (WSGFs) generate rates of sediment flux far exceeding other cross-shelf transport processes, contributing disproportionately to shelf morphology and net cross-shelf fluxes of sediment in many regions worldwide. However, the conditions deemed necessary for the formation of WSGF limit them to a narrow set of shelf conditions; they have been observed exclusively in regions where the seabed consists of very fine-grained sediment and typically co-occur with nearby river flood events. Here we document the occurrence of a WSGF event on a predominantly sandy seabed and in the absence of a preceding river flood. Our measurements confirm that the dynamics are governed by the friction-buoyancy balance observed in other WSGF and that WSGF can form in mixed grain-size environments and transport high concentrations of sand. The occurrence of WSGF on a predominantly sandy seabed suggests that they may occur under a much wider range of conditions and, given the global prevalence of sandy shelves, they may be a more frequent and more ubiquitous feature of shelf dynamics than previously thought.

Original languageEnglish
Pages (from-to)7634-7645
Number of pages12
JournalGeophysical Research Letters
Issue number15
Publication statusPublished - 16 Aug 2018

    Research areas

  • cross-shelf transport, marine gravity-driven flows, sandy seabed, sediment transport, wave-supported gravity flows

ID: 46828395