Documents

DOI

Minimizing passenger transfer times through public transport (PT) transfer synchronization is important during tactical planning and real-time control. However, there are computational challenges for solving this Timetable Synchronization Problem (TSP) for large, real-world urban PT networks. Hence, in this study we propose a data-driven, passenger-oriented methodology as a preparatory selection stage to reduce problem dimensionality by (1) determining the significant transfer hubs in the network, and (2) identifying subsets of lines within these hubs that need to be prioritized for transfer synchronization. In the first phase of our methodology we determine the spatial boundaries of transfer locations, using a clustering technique based on the passenger transfer flow matrix inferred from smartcard data. After that, a subset of hubs to be prioritized for synchronization is selected. In the second phase, we characterize the transfer patterns within the hubs based on a topological representation. Based on these topological graphs, the line bundles that need to be prioritized within the hubs are further identified using a modularity-based community detection technique. We apply our methodology to a real-world case study, i.e. the PT network of The Hague, the Netherlands. For this case study, our approach allows for prioritizing 70% of all transfers within identified transfer locations while only requiring 0.9% of these transfer locations, thus reducing the complexity of solving the TSP substantially at a relatively low cost. Our method supports public transport operators during timetable design and real-time control in determining where and which lines to prioritize when devising measures for improving transfer experience and synchronization.
Original languageEnglish
Pages (from-to)433-448
Number of pages16
JournalTransportation Research Part C: Emerging Technologies
Volume98
DOIs
Publication statusPublished - 2019

    Research areas

  • Clustering, Community detection, Hubs, Public transport, Synchronization

ID: 48083535