Are automatic systems the future of motorcycle safety?
A novel methodology to prioritize potential safety solutions based on their projected effectiveness
Gil, Gustavo; Savino, Giovanni; Piantini, Simone; Baldanzini, Niccolò; Happee, Riender; Pierini, Marco

DOI
10.1080/15389588.2017.1326594

Publication date
2017

Document Version
Peer reviewed version

Published in
Traffic Injury Prevention

Citation (APA)

Important note
To cite this publication, please use the final published version (if applicable). Please check the document version above.
Are automatic systems the future of motorcycle safety? A novel methodology to prioritize potential safety solutions based on their projected effectiveness.

Gustavo Gil, Giovanni Savino, Simone Piantini, Niccolò Baldanzini, Riender Happee & Marco Pierini

To cite this article: Gustavo Gil, Giovanni Savino, Simone Piantini, Niccolò Baldanzini, Riender Happee & Marco Pierini (2017): Are automatic systems the future of motorcycle safety? A novel methodology to prioritize potential safety solutions based on their projected effectiveness., Traffic Injury Prevention, DOI: 10.1080/15389588.2017.1326594

To link to this article: http://dx.doi.org/10.1080/15389588.2017.1326594
Are automatic systems the future of motorcycle safety? A novel methodology to prioritize potential safety solutions based on their projected effectiveness.

Gustavo Gil; Giovanni Savino; Simone Piantini; Niccolò Baldanzini; Riender Happee; Marco Pierini

1) Dipartimento di Ingegneria Industriale, Università degli Studi di Firenze, Firenze, Italy
2) Monash University Accident Research Centre, Monash University, Clayton, Victoria, Australia
3) Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, the Netherlands

Emails:

gil.gustavo@unifi.it
giovanni.savino@unifi.it
simone.piantini@unifi.it
niccolo.baldanzini@unifi.it
r.happee@tudelft.nl
marco.pierini@unifi.it
Are automatic systems the future of motorcycle safety? A novel methodology to prioritize potential safety solutions based on their projected effectiveness.

ABSTRACT

Objective: Motorcycle riders are involved in significantly more crashes per kilometer driven than passenger car drivers. Nonetheless, the development and implementation of motorcycle safety systems lags far behind that of passenger cars. This research addresses the identification of the most effective motorcycle safety solutions in the context of different countries.

Methods: A Knowledge-Based system of Motorcycle Safety (KBMS) was developed to assess the potential for various safety solutions to mitigate or avoid motorcycle crashes. First, a set of 26 common crash scenarios was identified from the analysis of multiple crash databases. Second, the relative effectiveness of 10 safety solutions was assessed for the 26 crash scenarios by a panel of experts. Third, relevant information about crashes was used to weigh the importance of each crash scenario in the region studied. The KBMS method was applied with an Italian database, totalizing more than one million motorcycle crashes in the period 2000-2012.

Results: When applied to the Italian context, the KBMS suggested that automatic systems designed to compensate for riders’ or drivers’ errors of commission or omission are the potentially most effective safety solution. The KBMS method
showed an effective way to compare the potential of various safety solutions, through a scored list with the expected effectiveness of each safety solution for the region to which the crash data belong. A comparison of our results with a previous study that attempted a systematic prioritization of safety systems for motorcycles (PISa project) showed an encouraging agreement.

Conclusions: Current results revealed that automatic systems have the greatest potential to improve motorcycle safety. Accumulating and encoding expertise in crash analysis from a range of disciplines into a scalable and re-usable analytical tool, as proposed with the use of KBMS, has the potential to guide research and development of effective safety systems. As the expert assessment of the crash scenarios is decoupled from the regional crash database, the expert assessment may be re-utilized, thereby allowing rapid re-analysis when new crash data becomes available. In addition, the KBMS methodology has potential application to injury forecasting, driver/rider training strategies, and redesign of existing road infrastructure.

Keywords: powered two-wheeler; road crash; motorcycle crash; motorcycle safety; collective knowledge; prioritization; policy-maker
INTRODUCTION

Motorcycle safety research aims to contribute to the understanding of motorcycle crashes and their causes in order to make motorcycling safer. Its societal relevance is increasing due to the proliferation of Powered-Two-Wheelers or PTWs and in the literature the safety problem is analyzed in each continent, and technological solutions are discussed (Sekine, 2014; Haworth, 2012; Jamson and Chorlton, 2009; Rogers, 2008; Schneider et al., 2012; Brown et al., 2015; Blackman and Haworth, 2013). Clearly, PTWs offer advantages saving time when travelling in congested roads, and requiring less parking space as compared to cars (Wigan, 2000). Considering the air-pollution (Shuhaili et al., 2013; Colvile et al., 2001), many cities have implemented electric Two/Three-Wheelers sharing programs (Barcelona, Grenoble, Toulouse, Paris), and future car-free initiatives (Brussels, Dublin, Madrid, Milan, Paris, and Oslo) allow the utilization of PTWs.

Nevertheless, the protection of motorcyclists is a pending issue. The societal cost of PTW crashes is high, and while passenger car safety improved dramatically in the past decades (Glassbrenner, 2012; Orsi et al., 2012), PTW safety improved marginally (NHTSA, 2014; Sekine, 2014; Broughton et al., 2013; Nicol et al., 2012; Deutermann, 2004). This might be explained via the multidisciplinary complexity of PTW safety (motorcycle dynamics, rider/driver behavior, etc.), which is a challenging subject to be addressed by the relatively small PTW industry (11.9 million of cars yearly registered in EU versus 1.0 million of PTWs (ACEA 2013, ACEM 2014)). Therefore, the arising question is: how to channel the constrained economical resources of the PTW industry to the most promising solutions in motorcycle safety? This paper presents a method for prioritizing PTW safety solutions. Ideally this would derive from a
prediction of benefits in terms of fatalities, injuries and costs. However a quantitative prediction is hardly possible due to the nature of certain safety technologies (e.g. diverse settings in a Traction Control System can modify the vehicle dynamics in different emergency situations). Thus, we will introduce the Safety Function (SF) principle, and test its effectiveness using crash data.

Unfortunately, current motorcycle crash databases are not harmonized (IMMA 2014), and their combined use can be demanding. Alternatively, the prioritization can be conducted based on expert opinions. However, the field of vehicular safety is characterized by a plethora of expert knowledge among a variety of specializations (e.g. crash analysis reconstruction, crash test analysis, energy absorbers design, traction & braking control, traffic control, forensic, driver/rider training, injuries treatment, etc.) that are not linked. Thus, there is a need to exploit this distributed knowledge and to combine it with crash statistical data in a systematic and constructive manner.

The aforementioned reasons, in particular the effort required for exploiting heterogeneous crash data, and the variety of expertise scattered among different scientific fields, motivated us to develop a new methodology for PTW safety. Pursuing to manage quantitative, imperfect, and not harmonized information; enabling to store, analyze, and reuse “collective expert knowledge” for wise decision-making.

This paper is organized as follows: firstly, a brief explanation of the only reference study (PISa project) that attempted a prioritization method for motorcycle safety technologies; secondly, the core of the method is explained for which a comprehensive definition of KB (Knowledge-Base) and KBS (Knowledge-Based System) are provided; thirdly, the methodology
is explained and illustrated by a case study; fourthly, a comparison is performed with PISa project outcomes; and finally the discussion section.

OVERVIEW OF PISA PROJECT

The EC funded PISa project (2007-2012 Grant no. 031360), included in-depth reconstruction of 60 motorcycle crash cases (sampled from the UK On-The-Spot study and two German databases: Forensic and COST 327). Some of them were physically emulated (videos taken from the vehicles approaching the place where the crash occurred), providing more insights of the crash scenario. All crashes were classified in a set of seven relevant motorcycle crash scenarios defined in the APROSYS project (APROSYS, 2009). The study identified 43 PTW safety solutions to be assessed. An international team of researchers active in the field of traffic crash analysis and prevention (two co-authors involved) used the information of each crash case to establish how effective each safety system could have been, had it been present in each case. Finally, the safety systems were prioritized weighting the applicability in each of the crash cases based on the relevance of each of the seven crash scenarios. The final priority list was published as internal project deliverable. The PISa priority list will be presented and compared with results of our methodology, which is a generalization of the approach of the PISa project.
FUNDAMENTALS AND CORE OF THE KBMS

Defining a Knowledge-Base

Definition 1: a Knowledge-Base (KB) is an organized repository of facts and expert understandings about a particular aspect of reality. Its content is systematically classified and adapted to be computed by a machine.

The information collected includes objective variables (quantitative) and subjective or categorical ones (qualitative). They are stored in a codified manner, allowing for the combination of new information with the knowledge previously acquired.

This current definition is aligned with broad concepts and particular definitions of KBs developed in the field of artificial intelligence since the 70's. At that time, the topic was called expert systems (Minsky, 1974; Waterman, 1976; Waterman and Jenkins, 1976; Buchanan and Feigenbaum, 1978; Waterman, 1978; Hayes-Roth, 1985; Waterman, 1986; Chapman and Pinfold, 1999).

Defining a Knowledge-Based System

Definition 2: a Knowledge-Based System (KBS) is a tool that by computing on the KB allows reasoning with the content of the KB, presenting the characteristics of the case analyzed to the user, enabling a well-grounded decision-making process.

The utilization of a KBS in a specific field is intended to emulate some aspects of human cognition (such as memory, reasoning and decision-making), but it differs in the fact that memories come from the interpretation of experimental data and the contributions of many persons with expertise in this field.
Current successful applications of KBS as tools for decision-making can be found in the following fields: Medicine (Shortliffe, 1976; Warner, 1968; Gennari et al., 2003; Pavlovic-Veselinovic et al., 2016), Pharmacogenomics (Thorn et al., 2013), Engineering Design Applications (Shaw and Gaines, 1987; Blount et al., 1995; Sainter et al., 2000; Verhagen et al., 2012; Quintana-Amate et al., 2015), Environmental science (Orgiazzi et al., 2016), Research operations (Negre et al., 2015; Radivojevic and Milbredt, 2016), Corporative Management (Grant, 1996; Meso and Smith, 2000; Soliman and Spooner, 2000), Energy production (Law et al., 2016), Automotive (Craig B. Chapman, 2000), and Aeronautics (Xu et al., 2012; Zhu et al., 2012).

In conclusion, the KBS approach can be very useful in multidisciplinary fields that have to deal with imperfect information (subjective or categorical variables). Accordingly, we applied it to motorcycle safety.

Safety Function concept

Definition 3: a Safety Function (SF) unequivocally describes the desired outcome for a safety solution, emphasizing in goals regardless the constitutive mechanisms or sub-systems.

The SF concept allows an easy evaluation of the potentiality of the safety solution among different scenarios. Next, an example illustrates how a SF may be accomplished by a combination of different safety systems.

Example of Safety Function (SF): ensuring the maximum longitudinal deceleration possible in a variety defined road surface conditions. Possible safety systems needed to accomplish this SF: 1) Anti-lock braking system: automatic system that acts on the wheel brakes to maintain tractive contact with the road surface according to driver inputs while braking,
preventing wheels locking up to avoid skidding; 2) Combined braking system: automatic system that distributes the braking action between both wheels of the PTW, even if rider's action consist in pure frontal or rear braking; 3) Active suspension: automatic system that acts on the suspension performing quick damping changes to maximize the braking capabilities (by restraining PTW pitch, height of CoG, and wheelbase during the load transfer); and more systems can enlarge this case.

Aim and main features of the KBMS

The Knowledge-Based system of Motorcycle Safety (KBMS) is a KBS which intends to capitalize on the scattered knowledge about vehicular safety with emphasis on motorcycles or Powered-Two-Wheelers (PTWs). The KBMS allows for the creation of a hierarchical list of SFs or safety solutions for PTWs, based on traffic crash information and expert judgments about possible crash countermeasures. The process consists of two separate stages (collecting and processing), allowing for the delocalization of actors involved. These stages are strictly defined for an operational framework.

METHODS

This section explains how to build each piece of the KBMS and how to implement the method (Figure 1). Each part of the methodology is complemented with a short example to illustrate the concepts.
Defining the evaluation framework

The framework defines the type of data to be used during the analysis, and how to use it in order to obtain useful information. For the application in motorcycle safety, we defined four pillars based on: I) definition of the road crash scenarios; II) database segmentation obtained by applying a set of queries; III) definition of Safety Functions to be evaluated; and IV) definition of how to perform the evaluation.

Road Crash Scenarios

Road crash scenarios are a way to represent the circumstances of a crash (e.g. type of road; trajectory of the vehicles; and type of collision). Generally, all the information is summarized in a pictographic system and each road crash database contains its own representation. Therefore, in order to be able to employ the methodology with different crash databases it is necessary to create a common subset of crash scenarios. Finally, these crash scenarios will be used by the safety experts at the collecting stage.

Example: the 26 representative crash scenarios for motorcycle crashes of the KBMS (default Evaluation Framework), have similar features of the scenario description of in-depth and national road crash databases (e.g. VALT, DaCoTA, Vic roads, GDV, and CADaS). The pictograms are provided as a downloadable and editable resource (see Appendix A).

Set of queries

To select the crash cases for the analysis, the investigators must express what they wish to consider by means of queries. Queries should be in a form that a database manager can use it
to extract road crash information (database segmentation) at the collecting stage. The database manager will provide the outcome of the queries in a predefined form.

Example: in our framework nine queries are defined (Appendix B) to group the 26 crash scenarios in 9 general scenarios, labeled from “A” to “I” (Appendix A).

List of Safety Functions

In the KBMS method a list of SFs is required for the expert assessment at the collecting stage. A given set of SFs may represent for example the most promising solutions to develop. To evaluate existent safety systems it is convenient to convert them into SFs, because the SF concept can be assessed with less information than a safety system/technology. In fact a decision on the latter may require explicit crash tests or simulations. Additionally, the formulation of non-existent SFs is an innovation enabler.

We elaborate a list containing 64 SFs for PTW application from available safety systems/technologies and conceptual ones (Appendix C). The review explored the automotive market, specialized literature in vehicular safety (Bayly et al., 2006; Anderson et al., 2011; Savino et al., 2012; Van Elslande et al., 2012; Savino et al., 2014, 2016; Corno et al., 2008; Gail, 2009), inertial sensors (Corke et al., 2007), PTW safety technologies (Montanari et al., 2011; Garcia et al., 2013; Corno et al., 2015; Mukhtar et al., 2015), and how remote sensing for scene understanding (Mukhtar et al., 2015) could be beneficial, mainly based in stereo vision (Suganuma and Fujiwara, 2007; Barth et al., 2009; Rovira-Más et al., 2009; Pfeiffer and Franke, 2011), LIDAR (Homm et al., 2011; Navarro et al., 2016) and RADAR (Schneider, 2005; Andres et al., 2012; Kellner et al., 2016). Finally, we ensure that the safety solutions evaluated in the PISa project all fit at least in one of the SFs of our broader list.
The expert assessment

Each expert involved in the process estimates the potentiality of each SF evaluated in each motorcycle road crash scenario. For consistency in the scores assigned among the evaluators a common understanding of the scoring scale is needed.
Table 1: this scale is conceived as a binary scaling method in order to avoid the neutral responses, like "may be" or "sometimes", that are undesirables for our study. The negative responses to a statement are (0, 1, 2) while the positive ones are (3, 4). The score scale pertains to the ratio scale classification in the field of statistics and quantitative research methodology (Likert, 1932).

Defining the Knowledge-Base implemented

The Knowledge-Base (KB) capitalizes on human expertise in the road safety field by encoding and storing the judgments of the expert assessment. The judgments are encoded in a manner that allows comparing the assessment between different experts, and performing calculations.

KB example: we define a multidimensional matrix that contains numerical values (Figure 2); each cell corresponds to a SF ranked by a human expert (according to
Table 1). Each cell is indexed for five characteristics: 1) road crash scenario (26 types); 2) SF (64 types); 3) objective (avoidance or mitigation); 4) expert category (e.g. Biomechanics, Passive Safety, Active Safety, Crash reconstruction, and Others); and 5) individual expert (anonymized information). In the present example, the result is a 26x64x2x5x3 matrix filled with values from 0 to 4.

Defining the Inference Engine (IE)

In any KBS the crucial element is the way of processing information with knowledge, which is commonly called Inference Engine (IE). The processing stage can be done by logic-based rules or math calculations. In particular, we defined the IE of the KBMS as a set of algebraic equations with the goal of prioritizing Safety Functions for different road crash scenarios. Our IE conducts the prioritization of SFs according to equation 6 by combining two sorts of information (Figure 1): the statistical relevance of each type of crash with respect to the region of study (given by equation 3); and the potentiality (given by equation 5) of each SF applied to particular crash configurations (contained in the Knowledge-Base).

The complete math formulations are presented below, distinguishing between: I. Core calculations; and II. Complementary calculations.

I. **Core of the KBMS Inference Engine:**

The equation set 1-3 refers to regional statistical road crash information; while the equation set 4-5 refers to the KB. Finally equation 6 combines both types of information (end of the inference process).
a. Crash quantity coefficients

\[Q_{\text{in}|y} = \frac{Q_{i|y}}{Q_y} \] \hspace{1cm} (1)

Notation: \(i \) means crash scenario number; \(y \) means year of statistical crash data; \(Q_{i|y} \) is the quantity of PTW crashes in the scenario \(i \) during the year \(y \); \(Q_y \) is the quantity of total PTW crashes during the year \(y \); \(Q_{\text{in}|y} \) is \(Q_{i|y} \) normalized to the total PTW crashes of the year.

b. Relevance coefficients

To obtain the relevance level of each crash scenario type, we compute the weighted mean for the last years of each crash scenario. The weights defined by the default framework are included in a vector of three elements called “kernel”. Different kernels shall compute annual, biannual, and triennial information.

\[\text{Kernel}_j = \{K_{j|y-2} : K_{j|y-1} : K_{j|y}\} \] \hspace{1cm} (2)

\[R_i = \frac{K_{j|y-2} \cdot Q_{i|y-2} + K_{j|y-1} \cdot Q_{i|y-1} + K_{j|y} \cdot Q_{i|y}}{\sum \text{Kernel}_j} \] \hspace{1cm} (3)

Notation: \(R_i \) means relevance of crashes in the scenario \(i \); \(j \) is the kernel number.

c. Effectiveness matrix

The effectiveness matrix contains coefficients that are computed from the KB (expert knowledge produced during the expert’s assessment). Note that this matrix is composed for a set of matrices which pursue different goals (eq. 4), thus the contents of these are not mix between them. We composed a large Effectiveness matrix (eq. 5) only for calculation purposes.
\[
Assessment_{\text{type}_r|k,i} = \frac{1}{\sum_{pss}^i} \sum_{pss} V_{k,i|pss} m_{k,i|pss}
\]

\[E_{r|k,i} = [Assessment_{\text{type}_r|k,i} ; \cdots ; Assessment_{\text{type}_r|k,i}] \tag{5}\]

Notation: \(k \) indicates the safety function number; \(Type \ r \) refer to the kind of analysis performed (e.g. Avoidance or Mitigation analysis in our study); \(pss \) means particular sub-scenario; \(i|pss \) refer to the particular sub-scenario of the \(i \) crash scenario; \(V_{k,i|pss} \) indicates the numerical value of the assumed effectiveness of the safety function \(k \) for the scenario \(i|pss \); \(m_{k,i|pss} \) is the quantity of experts performing the assessment on the safety function \(k \) and also in the scenario \(i|pss \); \(E_{r|k,i} \) is the effectiveness matrix that represents the effectiveness of the function \(k \) under the scenario \(i \) with regard to the type of goal \(r \).

d. Importance matrix coefficient

It acts highlighting the statistically significant cases of the effectiveness matrix for the particular country or region under analysis. This matrix is calculated by weighting the effectiveness matrix with the relevance of each crash scenario according to the crash data employed.

\[I_{r|k,i} = R_i * E_{r|k,i} \tag{6}\]

Notation: \(I_{r|k,i} \) is the importance of the safety function \(k \) for the crash scenario \(i \) with regard to the type of safety goal \(r \).

e. Output list

The output list consists in the summation of all importance’s (one-dimensional array) by each SF. Then, ordering the new one-dimensional array from the biggest numerical value to the
lowest one. Large numbers represent SFs more important than those ranked with small numbers.

II. Complementary metrics of the KBMS inference engine:

The following metrics play a key role in the KBMS aiming to quantify and control the undesirable effects produced for errors or missing data in the crash accident database used. In our application case, three years of ISTAT database (205,272 PTW crashes from 2010 to 2012) were used to compute the next two metrics.

f. Coverage metric > 90%

The default framework has nine general road crash scenarios. These are a simplification to perform the global traffic crash analysis. Consequently, not all the possible PTW crashes are included in these cases. The coverage metric computes the sum of all PTW crashes occurred in the nine general crash scenarios types (defined in Appendix B), and compares this to the total yearly PTW crashes. We adopted a minimum of 90%, implying that all the crashes considered in the general crash scenarios must cover more than 90% of the total PTW crashes occurred in this period. In the case that the value is less, more crash scenarios must be considered in order to have an acceptable representability of the reality.

g. Crash trends by scenario

Using information of the last years it is possible to compute the trends in each crash scenario type. This provides a ratio of crash occurrence among the time for each scenario, using the
previous year as a percentage reference. Abrupt changes in these ratios can alert about inconsistency or errors during the segmentation process.

Collecting Stage

The collecting stage consists of two parts. From available crash data, the first part selects the crashes belonging to each scenario type based on the segmentation (queries in Appendix B) of road crashes. The second part is the assessment conducted by experts in road safety, which add knowledge to the KB as explained next.

Experts are professionals with a recognized knowledge in their field and can come from a variety of disciplines (e.g. crash analysis reconstruction, crash test analysis, energy absorbers design, traction & braking control, traffic control, driver/rider training, injury assessment, etc.). Recruited experts (selection criteria in Appendix D) are provided with guidelines (Appendix E), to conduct the assessment, and with a clear terminology (Appendix F) defined to facilitate the participation of experts from different fields.

An example of expert assessment is depicted in Figure 3. A rating table (}
Table 1) is employed to assess the possible effectiveness of a set of SFs (Appendix C) in a set of road crash scenarios (Appendix A).

Regarding the incorporation of new assessments to the KB (collective knowledge), a two-step coherence verification test is performed on the new information. To this end, a Fleiss's kappa calculation (Fleiss, 1971) was performed to detect random answers in the compilation of the assessment reports by calculating the inter-rater agreement for qualitative items (Carletta, 1996; Gwet, 2008). The calculation can be made via spreadsheet as is explained by (Zaiontz, 2015). A second step consists in examining the ratings of each new assessment report, the number of positive and negative scores for each case (3 to 4 and 0 to 2, respectively) are compared against the corresponding mean scores previously stored in the KB. This coarse check is able to identify possible misinterpretations in the evaluation, which require contacting the expert who performed the given assessment and clarify. Once validated, expert ratings are incorporated into the KB to be used in the following stage of the analysis. Otherwise, the person in charge of the KBMS must interview the expert that performed the evaluation to identify the misunderstanding, solve it, and request a new assessment.

Processing Stage

In the processing stage (Figure 1), the IE combines the two types of information received in order to compute an organized list of SFs. The list presents the SFs for motorcycles with most potential to improve the vehicular safety in the region of study.
CASE STUDY: KBMS-ISTAT

We implemented the complete KBMS workflow (Figure 1) employing: 1) three years of road crashes (ISTAT: 2010-12); and 2) the assessment of experts in motorcycle safety field.

Italian road data (more than one million of PTW crashes) was used to identify the main trends along a variety of motorcycle crash scenarios in Italy. The 26 detailed crash scenarios of KBMS method were clustered into 9 general crash scenarios (Appendix A), according to the information gathered from ISTAT database (Table 2) by using the 9 queries of the default Evaluation Framework (Appendix B).

Independent of the road data analysis, a team of 3 experts was recruited in 2016. They analyzed the 26 crash scenarios to define the potential of each Safety Function to avoid and/or mitigate the crash (10 SFs in this case study). The assessment was expressed in a scoring report (Figure 3), aiming to feed the Knowledge-Base of the KBMS.

Finally, during the processing stage, a metric for each SF was computed by the IE generating a prioritized list of SFs (Table 3). This list represented the collective knowledge stored until that moment in the KB of the KBMS.

Results and interpretations

Our case study (KBMS-ISTAT) used 205,272 PTW crashes occurred in Italy in the period 2010-2012 (Table 2). The crashes analyzed involved at least one PTW (moped powered less than 50cc, scooter or motorcycle), and resulted in at least one injured or killed person. With the crashes’ classification of the KBMS default Evaluation Framework (Appendix A), we observed the following percentages regarding the total PTW crashes: a) 51% were represented by only four types of crash scenarios (namely A, H, F, and C); b) 25% occurred at intersections
(scenarios A and B) with a clear predominance of angular collisions; c) 12% occurred in angle collisions in straight road segments (scenario H); and d) 11% were rear-end collisions (scenario F). The trend for PTW crashes slowly decreased over the years in all cases except for the roundabout scenario, which increased in the same period. However, the increasing trend in the number of crashes in roundabouts could be due to the process of replacing standard intersections with roundabouts. Italy performed the replacements during the years analyzed and the safety performance of the roundabouts is under study (Giuffrè et al., 2015; Montella, 2011; Pecchini et al., 2014; Sacchi et al., 2011).

A prioritized list of Safety Functions (SFs) is obtained by applying the KBMS approach in our case study (Table 3). The SFs with higher priority are those with potential to avoid and mitigate the greatest possible number of motorcycle crashes in Italy. The top three SFs were: “Asist the rider to perform a hard braking without falling from the PTW”, “PTW autonomous-braking”, and “PTW send a signal to slow/stop other vehicle”. At the bottom of the prioritized list we found: “Driver state detection”, “Other vehicle alcohol interlock”, and “PTW Lane keeping”. Concerning the reasons for the lowest scored SF (PTW lane keeping) the rating reflects the fact that this function is obviously inadequate for urban motorcyclists. This finding becomes explicit by comparison of the numerical metric of this SF (0.14) with regard to the precedent ones (scored 0.74 and greater than 1.32). As a supporting fact of this result, we can highlight the practice of lane-splitting commonly observed in dense traffic (Aupetit et al., 2015).

We compare our outcome scored list of SFs (analysis KBMS-ISTAT) against the findings of the PISa study (Table 3). The comparison reflects good correspondence in the top three and bottom three SFs of the prioritized lists, notwithstanding the different approaches, expert subjects
and crash material. A more detailed comparison would be possible, however it would also be quite complicated due to a number of factors including also periods and places of the crash data, but also methodological factors.

Finally, by using the KBMS method we identified that 35-50% of PTW crashes in Italy could have been positively influenced by mitigating and avoidance SFs. The top scores of automatic systems to assist the rider during the crash precipitation event suggest an important role for these SFs. In practical terms, for the first two SFs in the ranking, equivalent safety systems in cars are currently available, namely Anti-lock Braking System + Electronic Stability Program (ABS+ESP) and Autonomous Emergency Braking (AEB). The effectiveness for passenger cars of ABS+ESP and AEB was demonstrated in real cases (Lie et al., 2004; Burton et al., 2004; Fildes et al., 2015). However, the solutions for motorcycles still need to be clearly defined and the KBMS method can contribute to this end.

DISCUSSION

The use of PTWs is high in Italy compared to Europe (Ordonez, 2016; Schaller and Perlot, 2016). PTW rider fatalities are high as well, 34% on the total road deaths in 2008 versus 19% of Europe (IRTAD 2010). Italian PTW crashes were studied carefully (Cafiso et al., 2012a, 2012b; Montella, 2011; Montella et al., 2012). However, in motorcycle safety the main constraint is the subjectivity of certain analysis due to the variability in the dynamics of the PTWs, the nature of the information and the judgments being made, as well as the methodology adopted. In order to overcome the difficulties, the authors propose the KBMS (Knowledge-Based system of Motorcycle Safety) as a constructive, flexible, and scalable methodology. Why
constructive? Additional experts’ contributions for the assessment of crash scenarios will lead to more accurate predictions about the solution’s performance. Why flexible? The Evaluation Framework allows the reorganization of crash scenarios and the modification of the inference engine according to the crash data available. Why scalable? The Evaluation Framework also allows the addition of new crash scenarios, new Safety Functions, and new objectives as: injury criteria, medical fares, convalescence days, etc.

The KBMS is not a single study; it was conceived to be updated (using fresh crash statistical data) and reused in the course of time. Another advantage of this method is the step of information extraction from crash databases, which allows for confidentiality of the original crash data, and the collaborative sharing of data will be made easier.

To the best knowledge of the authors, the safety system prioritization performed in the PISa project was the most comprehensive in terms of safety systems evaluated focused on motorcycle technologies. A subset of results of PISa pointing-out the most prominent safety solutions for motorcycle safety is presented in Appendix G. Thoroughly analyzing the documentation of the PISa project, we found no distinction between Safety Function (SF) and safety system/technology. Consequently, during the assessment phase experts were requested to evaluate the functionality of a safety solution or the performance of a specific technology without any distinctions between the potential benefits of a theoretical function and those of a practical system. Assessing how a technology may behave in a given circumstance requires more accurate information than the evaluation of a specific functionality (a specific Safety Function in our case), because functionalities just define desired behaviors. For this reason, in our study we made the concept of Safety Function (SF) explicit in the KBMS method. However, the PISa
rating process was a valuable step in the prioritization of safety solutions for PTWs and a good material to design a new methodology that overcome its weak points.

Concerning the road crash scenarios, previous EU research projects have used the 7 PTW crash scenarios defined in the APROSYS project as starting point (e.g. PReVENT, AIDE, EASIS, GST). However, 3 of the 7 crash scenarios concentrate less than 10% of total of motorcycle crashes in EU at that moment. This implies that more than 90% of PTW crashes (a wide variety of crash configurations) were grouped together in only 4 general crash scenarios. To address this limitation, the definition of the PTWs crashes scenarios of the KBMS Evaluation Framework contains 26 cases (Appendix A) that can be grouped in function of the level of detail of the crash database used. Although each crash is unique, they share some characteristics that allow us to cluster/group the crash in different general crash scenarios, and more variables to describe them offer us more details/resolution in the definition of the scenario. In our study case, we used the national crash database of Italy (ISTAT) that allowed us grouping the 26 crash cases into 9 general crash scenarios (more resolution of those of APROSYS). In addition, the KBMS introduces the concept of coverage metric. This helps to ensure a minimum of 90% of total motorcycle crashes included in the crash scenarios defined, monitoring the remaining percentage of road crashes that contains incomplete/unknown data.

An advantage of the KBMS method is the direct interpretation of the metric obtained. For example, the PISa priority list made clear which SF is more important, but it did not clarify the absolute importance of a function in quantitative terms. In the KBMS, the insight of how important a SF is with respect to the others is made explicit by its numerical value. For example in our case study, by simple numerical inspection of the metrics of the prioritized list (Table 3),
we obtain that the SF “PTW autonomous-braking (2.98)” is considered twice as important as the SF “Improvement of PTW conspicuity (1.42)” in Italian roads. It shall be noted that low income countries with poor infrastructure, outdated vehicles, and limited safety awareness will see different priorities. The new method can be applied to such other countries when crash data is provided.

Summarizing the benefits of the KBMS Evaluation Framework, it overcomes common limitations as: heterogeneous road crash data collection between different countries/regions; and restricted access to the databases due to sensible information about the victims involved. In particular, the segmentation of a road crash database by using queries list can be easily replicated locally to several databases, enabling database managers to disseminate harmonized numerical information for the KBMS method.

The key points learned during our preliminary attempt to collecting and storing expertise in the KB of the KBMS were: a) define a common vocabulary simplifying the exchange between experts of different specializations; b) in the expert assessment it is hardly recommendable to use a binary Likert type scale in order to avoid the accumulation of neutral responses in the KB; c) define a set of guidelines (Appendix E) baked in facts of in-depth crash databases to reduce the degree of variability of the assessment in the crash scenarios; and d) a very comprehensive list of SFs for the expert assessment, present the drawback to convert the evaluation of each crash scenario in a big time consuming task, and it may go against to the number of collaborators. For this reason, more research is needed in the definition of a shorter SFs list to assess. The reduction of the SF list is a trade-off between the quality of expertise collected and the time required to encode it in order to be stored in the KB of the KBMS.
We developed a new way to synergize between crash data and expertise in the vehicular safety field by means of the KBMS (Knowledge-Based system of Motorcycle Safety). The KBMS is a tool for road accident research and decision making, which enables the collaboration between researchers and data sharing - keeping critical/confidential population data in the source. The significant outcomes of this kind of collaboration are the definition of concrete goals in terms of crash avoidance and crash consequences mitigation to be achieved. The KBMS is a tool for quantitative prioritization of safety solutions, the results of which can be used by developers and industrial stakeholders interested in vehicular safety. Furthermore, a future widely accepted KBMS would be advantageous to promote throughout the whole Europe, becoming a tool to assist policy makers in taking well-funded decisions on safety regulations in order to make PTWs a safer means of transport.

Acknowledgements

Authors wish to acknowledge the discussions and suggestions of Dr. Ramses Sala (University of Florence, Italy), Dr. Lorenzo Berzi (University of Florence, Italy), Dr. Marilee Nugent (McGill University, Canada / University of Florence, Italy) and Dr. Simon Rosalie (Curtin University, Australia / University of Florence, Italy).

Funding
This work has been funded for European Community’s Seventh Framework Program through the international consortium called MOTORIST (Motorcycle Rider Integrated Safety) agreement no. 608092.

References

Anderson, R.W., Australia, S., Australia, T.C., 2011. Analysis of crash data to estimate the benefits of emerging vehicle technology. Centre for Automotive Safety Research, University of Adelaide.

doi:10.1109/TMECH.2014.2382717

Control Eng. Pract. 16, 644–657. doi:10.1016/j.conengprac.2007.08.001

Gail, J., 2009. Anti lock braking and vehicle stabilty control for motorcycles-who or why not?

Ordonez, M., 2016. Powered-two and powered-three wheeler registrations up by 3.3% in the EU.

doi:10.1016/j.scitotenv.2015.12.092

doi:10.1061/(ASCE)TE.1943-5436.0000705

doi:10.1007/s12544-015-0189-x

Table 1 Likert-type scoring scale defined to rank the benefit of the safety function in each crash scenario to analyze.

<table>
<thead>
<tr>
<th>Score Value</th>
<th>The assessed function would \ldots in crash avoidance / mitigation for this scenario.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>\ldots not have an effect \ldots</td>
</tr>
<tr>
<td>1</td>
<td>\ldots have a very little contribution \ldots</td>
</tr>
<tr>
<td>2</td>
<td>\ldots have a little contribution \ldots</td>
</tr>
<tr>
<td>3</td>
<td>\ldots have an important contribution \ldots</td>
</tr>
<tr>
<td>4</td>
<td>\ldots have a very important contribution \ldots</td>
</tr>
</tbody>
</table>
Table 2 Information retrieved after the segmentation process applied to three years of ISTAT road accident database. Unknown cases are less than 10% of total PTW accidents each year.

<table>
<thead>
<tr>
<th>Year</th>
<th>2010</th>
<th>2011</th>
<th>2012</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total vehicular accidents</td>
<td>211404</td>
<td>205638</td>
<td>188228</td>
</tr>
<tr>
<td>Total PTW accidents</td>
<td>71108</td>
<td>71790</td>
<td>62374</td>
</tr>
</tbody>
</table>

PTW accidents in a collision scenario type:

<table>
<thead>
<tr>
<th>Scenario Type</th>
<th>2010</th>
<th>2011</th>
<th>2012</th>
</tr>
</thead>
<tbody>
<tr>
<td>A: intersection & angle collision</td>
<td>18262</td>
<td>18188</td>
<td>15145</td>
</tr>
<tr>
<td>B: intersection & sideswipe collision</td>
<td>5424</td>
<td>5641</td>
<td>4663</td>
</tr>
<tr>
<td>C: straight street & sideswipe collision</td>
<td>6001</td>
<td>6376</td>
<td>5583</td>
</tr>
<tr>
<td>D: single vehicle accident</td>
<td>5479</td>
<td>5396</td>
<td>4489</td>
</tr>
<tr>
<td>E: head-on collision</td>
<td>4811</td>
<td>4693</td>
<td>4004</td>
</tr>
<tr>
<td>F: rear-end collision</td>
<td>7932</td>
<td>8226</td>
<td>7089</td>
</tr>
<tr>
<td>G: hit obstacle + hit pedestrian</td>
<td>5320</td>
<td>4981</td>
<td>4614</td>
</tr>
<tr>
<td>H: straight street & angle collision</td>
<td>8317</td>
<td>8553</td>
<td>7742</td>
</tr>
<tr>
<td>I: roundabout</td>
<td>3090</td>
<td>3385</td>
<td>2893</td>
</tr>
</tbody>
</table>
Table 3 Prioritized safety solutions of KBMS-ISTAT and PISa studies. The left column is the prioritized list of Safety Functions in the KBMS method. The KBMS metric expresses the importance of each SF (larger numbers represents more importance). PISa columns represent the same information in a different manner (quartiles and absolute score), allowing comparison between the KBMS-ISTAT outcomes with those of PISa project (mark 36 means “less important”).

<table>
<thead>
<tr>
<th>Safety Function description</th>
<th>KBMS</th>
<th>PISa ranking</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Metrics</td>
<td>Quartile</td>
</tr>
<tr>
<td>Assist the rider to perform a hard braking without falling from the PTW</td>
<td>3.87</td>
<td>1</td>
</tr>
<tr>
<td>PTW autonomous-braking</td>
<td>2.98</td>
<td>1</td>
</tr>
<tr>
<td>PTW send a signal to Slow/Stop other vehicle</td>
<td>2.52</td>
<td>1</td>
</tr>
<tr>
<td>PTW Alert to the rider of an oncoming vehicle</td>
<td>2.35</td>
<td>3</td>
</tr>
<tr>
<td>PTW restricts its maximum speed to street top speed</td>
<td>2.16</td>
<td>2</td>
</tr>
<tr>
<td>Energy dissipation element placed in the PTW to dissipate rider kinetic energy during crash. Case: frontal collision of the PTW</td>
<td>1.51</td>
<td>2 & 3</td>
</tr>
<tr>
<td>Improvement of PTW conspicuity (help to be seen for others)</td>
<td>1.42</td>
<td>1 & 4</td>
</tr>
<tr>
<td>Driver state detection (guarantees a minimum level of alert)</td>
<td>1.32</td>
<td>4</td>
</tr>
<tr>
<td>Other vehicle alcohol interlock</td>
<td>0.74</td>
<td>4</td>
</tr>
<tr>
<td>PTW Lane keeping</td>
<td>0.14</td>
<td>4</td>
</tr>
</tbody>
</table>
Figure 1 Diagram showing the entire process of prioritization. The components of the Knowledge-Based system of Motorcycle Safety are shown in grey. Firstly, in the Evaluation Framework is defined the set of queries, the selection of safety functions, and road crash scenarios. The queries are used to extract “Crash information” sending it to the Inference Engine. Parallel in the workflow (collecting stage) the SFs are assessed in several Road Crash Scenarios by experts, in order to obtain the contents of the Knowledge Base. Finally (processing stage), the Inference Engine combines “Crash information” with “Expert knowledge” to generate a prioritized list of Safety Solutions, which corresponds to the country/region of the road accident data used.
Figure 2 Representation of 5-dimensions matrix of the Knowledge Base. The height of the pentagonal prism represents the storage capability of expert assessments. Each lateral face represents the index of the KB matrix.
Figure 3 Example of an expert assessment of two Safety Functions (SFs) for parking-out maneuvers. The example corresponds to the analysis of the level of crash avoidance/mitigation of two SFs in the set of accident scenarios “h”. The numbers in the table represent the outcome of the expert evaluation using the scoring scale defined in Table 1.