Marangoni driven turbulence in high energy surface melting processes

Anton Kidessa, b, *, Saša Kenjereša, b, Bernhard W. Righolta, b, Chris R. Kleijna, b

aDepartment of Chemical Engineering, Delft University of Technology, Julianalaan 136, 2628BL Delft, Netherlands
bJM Burgers Centre for Fluid Mechanics, Mekelweg 2, 2628CD Delft, Netherlands

Abstract

Experimental observations of high-energy surface melting processes, such as laser welding, have revealed unsteady, often violent, motion of the free surface of the melt pool. Surprisingly, no similar observations have been reported in numerical simulation studies of such flows. Moreover, the published simulation results fail to predict the post-solidification pool shape without adapting non-physical values for input parameters, suggesting the neglect of significant physics in the models employed. The experimentally observed violent flow surface instabilities, scaling analyses for the occurrence of turbulence in Marangoni driven flows, and the fact that in simulations transport coefficients generally have to be increased by an order of magnitude to match experimentally observed pool shapes, suggest the common assumption of laminar flow in the pool may not hold, and that the flow is actually turbulent. Here, we use direct numerical simulations (DNS) to investigate the role of turbulence in laser melting of a steel alloy with surface active elements. Our results reveal the presence of two competing vortices driven by thermocapillary forces towards a local surface tension maximum. The jet away from this location at the free surface, separating the two vortices, is found to be unstable and highly oscillatory, indeed leading to turbulence-like flow in the pool. The resulting additional heat transport, however, is insufficient to account for the observed differences in pool shapes between experiment and simulations.

Keywords: Marangoni flow, Thermocapillary flow, Turbulence, Direct numerical simulation, Welding

1. Introduction

A long-standing question in the modelling of weld pool hydrodynamics is the one of the possible occurrence of turbulence and its influence on heat and momentum transfer. The underlying problem is that no welding model seems to exhibit true predictive capabilities, not even with respect to such a simple overall weld pool property as its post-solidification shape. Rather, all simulations require the adaptation of unphysical input parameters and/or material properties to truthfully reproduce experimental results. For instance, Winkler et al. [1] and Pavlyk and Dilthey [2] tune the heat input characteristics as well as the concentration of surface active species to obtain results matching experiments. More commonly, many authors (e.g. [2–8]) resort to the modification (i.e. enhancement) of transport coefficients, specifically thermal conductivity and viscosity, to match experimental results. No guideline has been established on how to modify the transport properties and generally they are tuned on an ad-hoc basis without any physical reasoning and a priori dependence on weld pool properties. For example, Pitscheneder et al. [7] enhance the molecular thermal conductivity and dynamic viscosity by a constant factor 7 to match experiments, Anderson et al. [3] increase only the viscosity by a constant factor 30, Mishra et al. [9] increase only the thermal conductivity by a factor 4, De and DebRoy [4] propose an optimization algorithm to determine the best values for thermal conductivity and viscosity with multiplication factors up to 17. Even when uncertainties in boundary conditions, e.g. heat transfer efficiency and energy distribution, are minimal, such as in the conduction-mode (i.e. with negligible vaporization) laser welding experiments conducted by Pitscheneder et al. [7], enhanced transport coefficients are required to match experimental weld shapes, strongly suggesting that the published weld pool models lack the inclusion of significant physics.

Furthermore, previously published computational studies fail to report oscillations and non-axisymmetric flow patterns at the liquid surface, such as have been observed in experiments for conduction-mode laser and autogeneous gas tungsten arc welds. Kraus [10] observes that “weld pool surface temperature profiles do not reach quasi-steady-state conditions, but rather vary around some time-averaged or mean values”. Zehr [11] reports that “high speed video images of the melt pool seem to reveal substantial oscillations of the free surface as the laser interacts with the workpiece”. Finally, Zhao et al. show highly unstable flow with multiple flow cells using surface particle-image-velocimetry of a gas-tungsten arc-weld [12, 13].

A few hypotheses as to how to account for lacking physics, and thus improve the prediction of weld pool models, have been proposed and tested by other authors. One
Nomenclature

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Aspect ratio</td>
</tr>
<tr>
<td>c_p</td>
<td>Heat capacity</td>
</tr>
<tr>
<td>$\frac{D}{Dt}$</td>
<td>Material derivative</td>
</tr>
<tr>
<td>D_c</td>
<td>Characteristic length scale (pool depth)</td>
</tr>
<tr>
<td>F_{damp}</td>
<td>Momentum sink term due to solidification</td>
</tr>
<tr>
<td>g</td>
<td>Volume fraction of solid</td>
</tr>
<tr>
<td>h_f</td>
<td>Latent heat of fusion</td>
</tr>
<tr>
<td>k</td>
<td>Turbulent kinetic energy</td>
</tr>
<tr>
<td>L_c</td>
<td>Characteristic length scale (pool radius)</td>
</tr>
<tr>
<td>L_K</td>
<td>Kolmogorov length scale</td>
</tr>
<tr>
<td>P</td>
<td>Laser power</td>
</tr>
<tr>
<td>p</td>
<td>Pressure</td>
</tr>
<tr>
<td>r_q</td>
<td>Laser beam radius</td>
</tr>
<tr>
<td>S_{latent}</td>
<td>Latent heat source term</td>
</tr>
<tr>
<td>T</td>
<td>Temperature</td>
</tr>
<tr>
<td>t</td>
<td>Time</td>
</tr>
<tr>
<td>t_K</td>
<td>Kolmogorov time scale</td>
</tr>
<tr>
<td>T_s, T_l</td>
<td>Solidus and liquidus temperature</td>
</tr>
<tr>
<td>u</td>
<td>Fluid velocity</td>
</tr>
<tr>
<td>U_c</td>
<td>Characteristic velocity</td>
</tr>
<tr>
<td>\bar{u}</td>
<td>Mean velocity</td>
</tr>
<tr>
<td>u'</td>
<td>Velocity fluctuation</td>
</tr>
</tbody>
</table>

Greek symbols

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ϵ</td>
<td>Turbulent kinetic energy dissipation rate</td>
</tr>
<tr>
<td>η</td>
<td>Laser absorptivity</td>
</tr>
<tr>
<td>γ</td>
<td>Surface tension</td>
</tr>
<tr>
<td>λ</td>
<td>Thermal conductivity</td>
</tr>
<tr>
<td>μ</td>
<td>Dynamic viscosity</td>
</tr>
<tr>
<td>ν</td>
<td>Kinematic viscosity</td>
</tr>
<tr>
<td>ω</td>
<td>Vorticity</td>
</tr>
<tr>
<td>ρ</td>
<td>Density</td>
</tr>
</tbody>
</table>

Subscripts

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>Normal direction</td>
</tr>
<tr>
<td>t</td>
<td>Tangential direction</td>
</tr>
</tbody>
</table>

identified deficiency is the common comparison of post-solidification weld pool shapes with numerical simulation results not including the solidification stage. Ehlen et al. [14] and Saldi et al. [15] have determined that the weld pool shape can significantly change during this last stage of a welding process. Unfortunately, while the inclusion of the solidification stage can improve the predictions in some situations, it still does not ensure predictive capabilities [15].

Another possible source of error may be attributed to the often neglected motion of the liquid-gas interface. Simulations conducted by Ha and Kim [16] based on Pitscheneder’s laser welding experiments [7] however show a very limited influence of a deformable free surface on the weld pool shape. The same conclusion has been made by Zehr [11] based on 3D simulations of conduction-mode laser welding.

Winkler et al. [1] have proposed the lack of surface chemistry and surface mass transfer processes in published models, resulting in a homogeneous distribution of surface active elements such as sulfur in the pool and at its surface, as potential source of the discrepancy. The group was able to improve their predictions using a mass transport model for a surface active element [17], and even more so when taking into account the effect of multiple surfactants [18]1. However, even though their results using a laminar flow assumption are promising, they do conclude that there is a need to address the question of turbulent flow in weld pools. This conclusion is reinforced by the previously mentioned experimental observations of flow instabilities which are not seen in the simulations by Winkler et al. even when including the effects of surfactant redistribution.

Although sometimes done without explicit justification (e.g. He et al. [20], Roy et al. [21]), the hypothesized occurrence of turbulence has been a natural reasoning for many authors (e.g. Anderson et al. [3], Choo and Szekely [22]) to justify increasing transport coefficients, which given turbulent flow would occur naturally due to turbulent diffusion. A few authors have attempted to replace the tuning of...
transport properties by the use of turbulence models such as RANS [23–36] or LES [37]. While this leads to improved agreement with experiments (as does any increase of transport coefficients), the use of particularly RANS turbulence models developed for aerodynamics in complexly shaped, Marangoni driven weld pool flows with a free surface and non-smooth solid-liquid interface, is questionable. In fact, Pavlyk and Dilthey [2] conclude their numerical study of a gas-tungsten-arc weld with the statement “that neither an increase of the transport coefficients by a constant factor nor an application of the k-ε model improved the correspondence between the predicted and actual weld pool shapes”, and support further investigation of the role of turbulence in such flows.

To analyze the possible role of turbulence, Chakraborty and Chakraborty [38] have presented a scaling analysis for high energy surface melting processes such as the laser welding process of interest here. The analysis allows the estimation of the flow regime based on three dimensionless numbers: (i) the melt pool depth-to-radius aspect ratio \(A = D/L \), (ii) the Prandtl number \(Pr \) and (iii) a dimensionless number \(N \) inversely proportional to the Marangoni number \(Ma \), \(N = (\mu \rho \partial \gamma / \partial T \eta P / (\mu \pi \lambda))^{1/3} \).

For the Pitscheneder experiment (see table 1 for material properties) at a welding power of 5200 W and a sulfur concentration of 150 ppm, the values of those dimensionless numbers are \(A \approx 1.5, Pr = 0.178 \) and \(N \approx 0.01 \). According to the analysis by Chakraborty and Chakraborty [38], the onset of turbulence is expected for \(2A^{2/3}N^{-2} \geq O(Re_{crit}) \), where \(Re_{crit} \) is estimated from experiments to be around 600 [38, 39]. Turbulent thermal diffusion is predicted to exceed molecular thermal diffusion when \(Pr \geq O(25N^2 A^{-2/3}) \). Here, \(2A^{2/3}N^{-2} \approx 2.6 \cdot 10^4 \), and \(25N^2 A^{-2/3} \approx 2 \cdot 10^{-3} \), indicating the flow to be turbulent.

Now that we have established a need to investigate the possibility of turbulent flow and heat transport in melt pools, we will use simulations with very high temporal and spatial resolution to investigate the significance of turbulence without having to resort to questionable modelling techniques. To date, no such simulation results of welding have been published, as even with access to supercomputing facilities the computational cost remains substantial for long welding times. The stationary conduction-mode laser welding experiments by Pitscheneder et al. [7] will be used as an attractive test case for the hypothesis of the occurrence of turbulence, as uncertainties in boundary conditions are minimized while still exhibiting the need for significantly enhanced transport coefficients in laminar simulations in order to match the experimental results. In our simulations, we assume a uniform surfactant distribution in the weld pool, thus focusing on thermal Marangoni effects as a cause for turbulent flow instabilities. Non-uniform surfactant distributions will most likely further contribute to flow instabilities. As such, our present study may be considered as a "best case scenario" for the occurrence of turbulent flow instabilities.

2. Model formulation

2.1. Governing equations

A schematic of a typical weld is shown in figure 1, where a slab of metal is targeted by a high power laser, where the relative speed between the laser and the target is zero. The laser irradiation will be absorbed by the target material, leading to an increase in temperature and eventually a melting phase change. Heat will be transferred into the bulk of the welded material by conduction and thermocapillary driven convection. These phenomena are mathematically modeled with an energy transport equation with a source term for the latent heat of the phase change

\[
\frac{D}{Dt}(\rho c_{\text{p}} T) = \nabla \cdot (\lambda \nabla T) + S_{\text{latent}} \tag{1}
\]

Due to the non-uniform heating of the top surface, large temperature gradients will develop. These temperature gradients result in gradients in surface tension, leading to thermocapillary forces along the non-deformable liquid-gas interface driving flow in the melt pool. The momentum transport is described by the Navier-Stokes equations, with a momentum sink that models the friction in the so-called mushy zone, where the liquid and solid phase co-exist

\[
\frac{D}{Dt} \mathbf{u} = -\frac{1}{\rho} \nabla p + \nabla \cdot (\nu \nabla \mathbf{u}) - \mathbf{F}_{\text{damp}} \tag{2}
\]

Here, we have assumed constant density over all phases.

2.1.1. Latent heat release

The effect of melting and solidification on the heat transfer are taken into account via the source term \(S_{\text{latent}} \) in equation 1

\[
S_{\text{latent}} = \rho h_f \frac{dg}{dt} \tag{3}
\]
with \(g \) the volume fraction of solid material, which is assumed to vary linearly over the melting temperature range between solidus and liquidus

\[
g = \frac{T_l - T}{T_l - T_s}, \quad T_s < T < T_l
\]

(4)

2.1.2. Coupling of momentum and heat transport

Through the inclusion of the momentum sink term, the momentum equation 2 is valid for the entire domain including both liquid and solid regions. The (semi-)solid regions are modeled as a porous medium, introducing a momentum sink following the isotropic Blake-Kozeny model [40]

\[
F_{damp} = \frac{\mu}{K \rho} u
\]

(5)

\[
K = K_0 \left(1 - g \right)^{1 + \varepsilon}
\]

(6)

with \(\mu/K_0 = 10^6 \text{ N m}^{-1} \text{ s}^{-1} \) and \(\varepsilon = 10^{-3} \). A similar approach has successfully been applied in DNS by Breugem et al. [41].

2.2. Boundary conditions

For 2D simulations we assume the melt pool to be axi-symmetrical and make use of this by only simulating a wedge of the domain. Circumferential gradients are zero on the wedge faces. The conditions on the remaining boundaries (which are the same in 2D and 3D) are outlined in the following.

2.2.1. Heat input

At the top surface, the laser irradiation is modeled by a top-hat distributed heat flux. Because the heat loss due to radiation and convection is only a small fraction of the laser irradiation, we apply adiabatic boundary conditions everywhere except the irradiated area, where we apply a top-hat distributed heat flux. Because the heat loss due to radiation and convection is only a small fraction of the laser irradiation, we apply adiabatic boundary conditions everywhere except the irradiated area, where we apply a top-hat distributed heat flux.

\[
\lambda \nabla n T \big|_{z=0} = \frac{\eta P}{\pi r_q^2}, \quad r \leq r_q
\]

(7)

Here we follow Pitscheneder et al. [7] with \(\eta = 0.13 \), \(P = 5200 \text{ W} \) and \(r_q = 1.4 \text{ mm} \).

2.2.2. Momentum

At the liquid-gas interface, we introduce a shear stress in the liquid due to surface tension gradients along the interface (Marangoni force):

\[
\mu \nabla n u_t \big|_{z=0} = \frac{d\gamma}{dT} \nabla T
\]

(8)

The variation of surface tension with temperature is computed using the thermochemical model of Sahoo et al. [19]. The relevant curve for a sulfur concentration of 150 ppm is plotted in figure 2. Experimentally, such a behaviour with a sign change at a critical temperature has been shown to occur in steels [42, 43] and pure iron [44], as well as other metals such as silver [44] and nickel [45].

Based on the small Capillary number \(Ca = O(10^{-2}) \) for the studied weld pool, indicating that surface tension will effectively counter-act deformations due to fluid flow, we assume the free surface to be non-deformable. This assumption is in line with the observations by Ha and Kim [16], who investigated the influence of free surface deformations for the Pitscheneder et al. [7] case and concluded it is not important. The non-deformable surface assumption, however, may not hold for other welding processes and conditions at higher Capillary numbers, as experimental results show [12, 13, 46].

At all other surfaces, we set the velocity to zero.

3. Numerical procedure

Our solver is built on top of the open source finite volume framework OpenFOAM (version 2.1.x) [47]. We use a 2nd order backward differencing time marching scheme, and a 2nd order TVD scheme (limitedLinear [48]) for the divergence terms. At every time step, the non-linearity associated with the pressure-velocity-coupling is handled by the iterative PISO algorithm [49]. Once a divergence free velocity field has been computed at a given time step, the energy transport equation (1) is solved. If a phase change occurs, the temperature equation will be non-linear. The non-linearity due to latent heat is dealt with using an implicit source term linearization technique [50].

To properly resolve the turbulent structures in space and time using direct numerical simulations, we estimate the length and time scales of the smallest turbulent eddies (Kolmogorov scales), which depend on a characteristic velocity and a characteristic length scale. Looking at

\[^2 \text{The solver and input files will be made available through the journal’s supplementary material.} \]
<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solidus temperature T_s</td>
<td>1610</td>
<td>K</td>
</tr>
<tr>
<td>Liquidus temperature T_l</td>
<td>1620</td>
<td>K</td>
</tr>
<tr>
<td>Specific heat capacity c_p</td>
<td>670</td>
<td>J kg$^{-1}$ K$^{-1}$</td>
</tr>
<tr>
<td>Density ρ</td>
<td>8100</td>
<td>kg m$^{-3}$</td>
</tr>
<tr>
<td>Thermal conductivity λ</td>
<td>22.9</td>
<td>W m$^{-1}$ K$^{-1}$</td>
</tr>
<tr>
<td>Latent heat of fusion h_f</td>
<td>2.508 · 105</td>
<td>J kg$^{-1}$</td>
</tr>
<tr>
<td>Viscosity μ</td>
<td>6 · 10$^{-3}$</td>
<td>Pa s</td>
</tr>
<tr>
<td>Surface tension temperature</td>
<td></td>
<td></td>
</tr>
<tr>
<td>coefficient $\partial \gamma / \partial T</td>
<td>_0$</td>
<td>-5.0 · 10$^{-4}$</td>
</tr>
<tr>
<td>Entropy factor</td>
<td>3.18 · 10$^{-3}$</td>
<td></td>
</tr>
<tr>
<td>Standard heat of adsorption</td>
<td>-1.66 · 108</td>
<td>J kmol$^{-1}$</td>
</tr>
<tr>
<td>Surface excess at saturation</td>
<td>1.3 · 10$^{-8}$</td>
<td>kmol m$^{-2}$</td>
</tr>
</tbody>
</table>

The experimental and numerical results reported by Pitscheneder et al. [7], we estimate a characteristic velocity $U_c \approx 0.2$ m s$^{-1}$, and a characteristic length scale of $2L_c \approx 4 \times 10^{-3}$ m. Now with the turbulent kinetic energy dissipation rate $\epsilon \approx U_c^3 / D$, the Kolmogorov length scale is estimated by

$$L_K \approx \left(\frac{\nu^3}{\epsilon} \right)^{1/4} = \left(\frac{D \nu^3}{U_c^3} \right)^{1/4} \approx 2 \times 10^{-5} \text{m} \tag{9}$$

The Kolmogorov time scale is given by

$$t_K = \left(\frac{\nu}{\epsilon} \right)^{1/2} \approx 6 \times 10^{-4} \text{s} \tag{10}$$

The solution domain is a cylinder of radius $R = 7.5$ mm and height $H = 7.5$ mm, discretized with a mesh of 4.8 million cubic control volumes. The area where we expect fluid flow consists of small cubes with a a cell spacing of 23 µm, whereas we use larger cells of 188 µm away from the liquid region. The mesh is shown in figure 3. The time step is dynamically set obeying a maximum Courant number of $Co = U \Delta t / \Delta x < 0.33$, resulting in a typical time step of less than 1×10^{-5} s.

To further demonstrate the sufficient resolution of our mesh for proper direct numerical simulation (DNS) of the liquid, anticipating the simulation results presented in the next section, we determine the distribution of the turbulence dissipation rate in the simulated flow as $\epsilon = \nu \sqrt{\nabla u' \cdot \nabla u'}$. The ratio of the mesh spacing Δx and the smallest turbulence length scales L_K, based on the simulated velocity and dissipation averaged over a time of 0.5 s, is plotted in figure 4 for a slice through the pool, showing excellent resolution of even the smallest scales in our simulations. Only a very small region near the stagnation point at the surface, consisting of few mesh cells, is under-resolved by a factor up to 4.

Figure 3: 3D mesh, where one quarter of the domain has been clipped for visualization. The coarse outer mesh with a grid cell size of 188 µm is refined in three steps to the finest inner mesh with a grid cell size of 23 µm. The latter is too fine to be resolved in this figure.

Figure 4: Grid size to turbulent length scale ratio $\Delta x / L_K$ in the in the y=0 mm plane, with the dissipation ϵ averaged over a time of 0.5 seconds. A length scale ratio smaller than 1 means turbulence is perfectly resolved, which is the case everywhere except a small region near the stagnation point at the surface (separated by a black line, with a maximum value of 4). This and subsequent figures show (quasi) instantaneous cross sections of the strongly unstable and non-axisymmetric weld pool. Such cross sectional snapshots are therefore presented in the x-z plane at y=0 of a Cartesian coordinate system, rather than the r-z coordinate system used in figures 1-3.
4. Results and Discussion

4.1. Verification with enhanced transport coefficients

In order to obtain good agreement between their numerically simulated melt pool shapes and experimentally observed post-solidification weld shapes, Pitscheneder et al. [7] artificially enhance the viscosity and thermal conductivity of the welded steel by a non-elicited constant factor 7. We can reproduce their result using this constant enhancement factor, when, as done by Pitscheneder et al., we use a coarse 2D-axisymmetric grid, relatively large time steps, and a diffusive upwind discretization scheme (see figure 5). Without artificially increasing the transport coefficients, i.e. when using physically realistic values for the viscosity and the thermal conductivity, the flow within the melt pool differs significantly and so does the obtained final weld pool shape, as we will show in the following section.

4.2. Direct numerical simulations without enhancement of transport properties

The melt pool shape after 5.00s of heat input, obtained from three-dimensional direct numerical simulations with realistic (non-enhanced) transport properties, is shown in figure 6. Also shown are melt pool shape snapshots after 4.27s and 4.70s of heat input. Compared to the results obtained with enhanced transport coefficients and a diffusive numerical scheme on a coarse 2D mesh, as shown in figure 5, it is now clearly visible that (i) the flow has not remained symmetric, leading to an asymmetric melt pool shape at this time instance; (ii) the melt pool is a bit wider and much less deep, leading to a pool depth-to-radius aspect ratio which is now smaller than 1; (iii) The melt pool shape is now strongly time dependent and oscillating.

These observations may be understood as follows: Due to the low (i.e. non-enhanced) molecular thermal conductivity, higher temperatures are now sustained at the melt pool surface, which lead to a large region subject to a negative surface tension gradient, in place of the previously dominant positive surface tension gradient (figure 2). The latter caused a flow directed inward along the pool surface, and towards the pool bottom along its axis, resulting in a deep, hemispherical pool shape as shown in figure 5. The sign change in the surface tension gradient now leads to a surface flow directed radially outward from the pool centre, rather than the inward directed flow in the 2D simulation with enhanced transport coefficients. This results in a wide, shallow pool, rather than a deep, narrow pool. At the edge of the melt pool surface, where temperatures are lower, the surface tension gradient is still positive. As a result, the radially outward surface flow from the pool centre impinges onto a second surface flow directed radially inward from the edge of the pool towards the pool centre. At the point where the two opposing flows meet, at a radial distance of roughly 1.5 mm, a circular, downward jet from the pool surface towards the base of the pool is formed. The downward jet is unstable, as both its origin and its angle oscillate in time. We use the term “instability” as it stresses that the initially laminar flow has transitioned into a chaotic state, and not a mere regular laminar unsteadiness. The general flow topology has been anticipated by Mills et al. [51] and Keene et al. [52]. Mills et al. also comment on the possibility of thermocapillary instabilities arising due to temperature gradients normal to the free surface, based on a theory formulated by Nemchinsky [53] assuming constant $\partial \gamma / \partial T$. Here however, in contrast to the case of Nemchinsky, the downward jet is clearly the dominating source of turbulent motion, as opposed to capillary waves at the free surface. The oscillating downward jet due to the sign change in surface tension also sets the present case apart from previous investigations of thermocapillary instabilities with constant, negative $\partial \gamma / \partial T$ [54–57].

The oscillating, hot, downwardly directed jet transports so much heat away from the surface that the melt pool boundary is continuously melting and re-solidifying, depending on where the jet is facing at a given time instance. This causes the oscillation of the pool boundary, as visible from the overlayed pool shapes at two additional time instances in figure 6. The flow is also strongly three dimensional, with significant, unsteady flow present in the azimuthal direction (figure 7). The flow pattern and vorticity ω at various time instances around $t = 3.0s$, roughly 0.01s apart, is shown in figure 8. During these time instances the right jet oscillates back and forth, whereas the left jet is relatively stable. This is of course not true for all time instances, highlighting the chaotic nature of the independent motion of the two jets.

3Strongly refined towards the free surface and pool centre, with the smallest $\Delta r = 90 \mu m$ and $\Delta z = 12 \mu m$
4.3. Analysis of turbulent flow properties

We now address a more quantitative analysis of the turbulent nature of the melt pool flow, and the importance of turbulent heat transfer.

Using the computed instantaneous velocity fluctuations \(u' = u - \overline{u} \), we can determine the turbulent kinetic energy \(k = \frac{1}{2} u' \cdot u' \), and the turbulent viscosity as \(\nu_t = 0.09k^2/\epsilon \), with the turbulent kinetic energy dissipation rate \(\epsilon = \nu \nabla u' : \nabla u' \). Here, all averages have been computed over the time interval between 4.5 and 5s. The results are shown in figures 11 and 12, respectively. The turbulent kinetic energy takes its highest values near the extreme positions of the jet and near the stagnation point at the free surface. The turbulent viscosity assumes its largest values of roughly 50 times the molecular value in an area around the end point of the jet. The space averaged value of the turbulent viscosity is approximately 7.4 times the molecular value. This, coincidentally, is close to the factor 7 enhancement for the transport properties used by Pitscheneder et al. [7] to match their experimental results. However, the uniform enhancement used by Pitscheneder et al. leads to distinctly different melt pool shapes than the turbulent enhancement following from our DNS simulations. In the first, a hemispherical melt pool shape is obtained which is deepest at the centre, whereas the maximum turbulent enhancement occurs in the oscillating jet regions and causes the pool to be wider and deeper at the edges.

To further quantitatively investigate the oscillating flow, we track a monitoring point at a distance of \(x=1 \) mm and a depth of \(z=1 \) mm from the centre of the pool surface. The temperature history at this monitoring point is shown in figure 13a. After reaching a quasi steady state, it shows an irregular oscillation with an amplitude of about 200 K around a mean temperature of 1720 K. The velocity magnitude at the monitoring point (figure 13b) oscillates violently with an amplitudes of roughly 50% of its mean value.

The frequency spectrum of the temperature and velocity magnitude signals at the monitoring point, obtained by a discrete Fourier transform (DFT) of the signals for
Figure 8: In-plane (x,z) velocity vectors in the $y=0$ mm plane at a few time instances around $t = 3.0$ s (approximately 0.01 s apart), and out-of-plane vorticity contours.

Figure 9: Pool surface $(z=0$ mm) temperatures in Kelvin at three time instances, top view. Isolines are drawn at 1620K, 1700K, 2200K, 2400K and 2500K (from outside to inside).
the quasi steady state period between 2 and 5 seconds after the onset of heating, is shown in figures 14a and 14b, respectively. Both spectra exhibit multiple peaks in the low-frequency region up to 10 Hz. Due to the low Prandtl number of the fluid, momentum diffusivity is small compared to thermal diffusivity. As a result, high frequency oscillations are more strongly damped for temperature as compared to velocity. The temperature signal drops beyond 10 Hz, whereas the velocity signal only starts dropping around 30 Hz. The most dominant frequencies in the temperature spectrum are around 5, 7 and 11 Hertz, which also appear in the spectrum of the velocity magnitude, though accompanied here by many other peaks up to 30 Hertz.

4.4. The 3D nature of the flow instabilities

To unravel to which extent the complexity and oscillating instability of the melt pool flow is related to its three-dimensionality, we have also performed a high-fidelity two-dimensional axisymmetric simulation with a mesh that was very similar to that of the 3D simulations, and identical numerical schemes. The 2D simulated flow, unlike earlier published 2D flow simulations with enhanced transport coefficients on coarse meshes with diffusive numerical schemes, exhibits a highly unstable nature, very similar to that observed in the 3D simulations. A characteristic flow oscillation is shown in figure 15. The, now axisymmetric, circular downward jet stemming from the stagnation point at the free surface shows qualitatively the same oscillatory pattern as observed in the 3D simulations. It may therefore be concluded that the additional degree of freedom

Figure 10: Pool surface (z=0 mm) flow at three time instances, top view. The largest vectors in the vicinity of the stagnation point have been blanked for clarity.

Figure 11: Turbulent kinetic energy k in the y=0 mm plane, averaged over 0.5 s.

Figure 12: Ratio of turbulent diffusivity over molecular diffusivity ν_t/ν in the y=0 mm plane, based on turbulent kinetic energy and turbulence dissipation averaged over 0.5 s.
Figure 13: Temperature and velocity magnitude at monitoring location $x=1$ mm, $y=0$ mm, $z=1$ mm.

(a) Temperature at monitoring point.

(b) Total velocity magnitude at monitoring point.

Figure 14: DFT of temperature and velocity magnitude at monitoring point $x=1$ mm, $y=0$ mm, $z=1$ mm. Inserts on log-log scale, in which, as a reference, a blue line with -5/3 slope is shown.

(a) DFT of temperature at monitoring point

(b) DFT of velocity magnitude at monitoring point
of three-dimensionality is not a requirement for triggering the jet instability. However, in the 2D case the oscillation is much more regular, which can easily be observed from in the temperature signal at the monitoring point (figure 15). While the amplitude of the oscillation of roughly 250 K is even larger than in the 3D flow, the oscillation frequency is low and regular, with large peaks in the spectrum reoccurring at roughly 4 Hz.

A similar oscillation pattern has been reported in literature for the case of a slot jet impinging on a concave curved wall [58]. However, in the presently studied melt pool flow, at least in 2D, the instability appears not to be simply due to the interaction between the impinging jet and the concave bottom of the pool, but stems from a more complex interplay between the jet, its oscillating origin, and the constantly deforming melt pool bottom due to melting and re-solidification. We performed a 2D axisymmetric simulation in which, after a quasi steady-state with strong jet oscillations had been reached, further melting (and re-solidification) of the pool boundary was prevented by artificially increasing the latent heat of melting by a factor 100, thus de facto fixing the pool boundary. With this fixed pool boundary, the jet oscillations quickly died out and the flow became steady-state. This demonstrates that, at least in 2D, the interplay with a deforming melt pool boundary is necessary to sustain the jet oscillations. The same fixation of the pool boundary in 3D did not lead to a suppression of the oscillations, indicating that the 3D case is more prone to instabilities than the 2D case.

5. Conclusion and outlook

We have simulated the liquid metal flow in the melt pool of a conduction-mode laser weld, using high-fidelity direct numerical simulations to gain insight into flow instabilities that have been reported in experimental studies, but not in numerical studies to date.

In our simulations, unlike earlier numerical studies of weld pool flows that used coarse meshes, diffusive numerical schemes and enhanced transport coefficients, we observe self-sustained flow instabilities. These arise even in the absence of a deformable liquid-gas surface, temperature dependent material properties, or non-uniform surfactant concentrations. The instabilities even occur when restricting the flow to axial symmetry, albeit the oscillation is much more regular in that case.

The amplitude and frequency spectrum of the temperature and velocity oscillations support the argument of enhanced heat and momentum transport due to turbulent flow in the melt pool. Averaged in space, the turbulent transport enhancement is of the same order of magnitude as ad-hoc enhancement factors commonly used in previous studies to obtain agreement between numerical weld pool simulations and experimentally observed weld pool shapes. However, the observed turbulent enhancement is strongly non-uniform, and highest in the regions of the oscillating jets near the rim of the weld pool. Therefore, unlike in simulations assuming uniform transport enhancement and unlike experimentally observed for this case, our simulations lead to W-shaped melt pools that are deepest near the rim of the pool. More generally though, W-shaped pools have been observed by many authors [2, 14, 17, 59–61].

Thus, while we have clearly demonstrated the presence of turbulent flow instabilities and turbulent transport enhancement in laser weld pools, the predicted turbulence does not lead to proper melt pool shape predictions. We believe the most likely deficiency of our model to be in the assumed uniform surfactant concentration due to the lack of a mass transport model for surfactant species. Winkler et al. [17] have demonstrated that surfactant concentrations may actually be highly non-uniform, leading to strong alterations of the Marangoni forces and flow. The stagnating flow at the jet origin will lead to a local high concentration of surface active element [18], strengthening the local surface tension maximum and thus amplifying the Marangoni forces and the resulting flow. Hence, combining the results from Winkler et al. [17] with the present results, direct numerical or dynamic large eddy turbulence simulations coupled with a mass transport model for the surfactants are probably needed to move forward towards really predictive melt pool models for welding.

Acknowledgments

We would like to thank the European Commission for funding the MINTWELD project (reference 229108) via the FP7-NMP program. We thank SURFsara for the support in using the Lisa Compute Cluster (project MP-235-12).

References

Figure 15: Two-dimensional flow vorticity at various time instances in the axisymmetric case, with corresponding temperature probe at a monitoring point at r=1mm, z=1mm

[25] N. Chakraborty, S. Chakraborty, Influences of Sign of Surface Tension

Figure 15: Two-dimensional flow vorticity at various time instances in the axisymmetric case, with corresponding temperature probe at a monitoring point at r=1mm, z=1mm.

A. K. Skouras, N. Chakraborty, S. Chakraborty, Computational Analysis of the Effects of Process Parameters on Molten Pool Temperature, Journal of Laser Welding: Through Marangoni flow, a surface-active agent can affect not only the weld pool depth, but also the pool surface deformation, pool surface oscillation, and ripple formation, Welding Journal 90 (12).

B. Dikshit, G. R. Zende, M. S. Bhatia, B. M. Suri, Convective

