QMRA of an indoor swimming pool
Chlorination versus UV-based treatment (PPT)

Peters, Marjolein; Keuten, Maarten; de Kreuk, Merle; Vrouwenvelder, Hans; Rietveld, Luuk; Medema, Gertjan

Publication date
2017

Document Version
Accepted author manuscript

Citation (APA)

Important note
To cite this publication, please use the final published version (if applicable). Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights. We will remove access to the work immediately and investigate your claim.
QMRA of an indoor swimming pool

Chlorination versus UV-based treatment

Marjolein Peters¹, Maarten Keuten¹,², Merle de Kreuk¹, Hans Vrouwenvelder¹, Luuk Rietveld¹ and GertJan Medema¹
1) Delft University 2) Hellebrekers Technieken
Introduction

Alternative disinfection

- Good microbial water quality with UV-based treatment
- What are the risks of infection compared to chlorination?

Quantitative Microbial Risk Assessment (QMRA)
QMRA parameters (swimming pool)

- Competition pool: 25x10x2 m³
- Turnover time:
 - Chlorinated: 4 h
 - UV-based treatment: 30 min
- bathing load: 40 bathers /h
- Swimming: 12h /day
QMRA parameters (micro-organisms)

- *Campylobacter jejuni*
- *Escherichia coli O157:H7*
- *Salmonella enterica*
- *Cryptosporidium parvum*
Micro-organism release

- Enterobacter release bathers: 9% (Peters et al. 2016)
- Intact cell release distribution (Keuten et al. 2013)
 - 0-5 min: 3.0×10^9 intact cells $\rightarrow 1.06$ g faecal matter
 - 6-10 min: 2.7×10^9 intact cells $\rightarrow 979$ mg faecal matter
 - 11-15 min: 1.4×10^9 intact cells $\rightarrow 518$ mg faecal matter
 - 16-20 min: 1.3×10^9 intact cells $\rightarrow 473$ mg faecal matter
 - 21-25 min: 0.4×10^9 intact cells $\rightarrow 158$ mg faecal matter
 - 26-30 min: 0.4×10^9 intact cells $\rightarrow 143$ mg faecal matter
Pathogen release

• Faecal matter: 10^8 pathogens /g

• Pathogens within (de Wit et al. 2001):
 – *Campylobacter jejuni*: 1.3%
 – *Escherichia coli* O157:H7: 0.3%
 – *Salmonella enterica*: 0.4%
 – *Cryptosporidium parvum*: 0.1%

• Pool basin is homogeneously mixed
QMRA parameters (bathers)

- Swim duration: 1h
- 59 swimming events per year
- 100% pre-swim shower
- Only continual release (no incidental)
- Water ingestion: 13.7 mL / bather (Suppes et al. 2014)
- Infection probability NL: 283/1000 (de Wit et al. 2001)
Treatment

• Chlorination;
 – 3 log reduction in 1 minute (Blaser 1986) for *C. jejuni*, *E. coli* and *S. enterica*
 – *Cryptosporidium* removal by filtration
 1 log reduction per filter passage (Amburgey 2011)

• UV-based treatment
 – 5 log removal / inactivation per treatment
Dose response models

• Beta-Poisson model:

<table>
<thead>
<tr>
<th></th>
<th>α</th>
<th>β</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Campylobacter jejuni</td>
<td>0.144</td>
<td>7285</td>
<td>(Black et al. 1988)</td>
</tr>
<tr>
<td>Escherichia coli O157:H7</td>
<td>0.155</td>
<td>24386</td>
<td>(DuPont et al. 1971)</td>
</tr>
<tr>
<td>Salmonella enterica</td>
<td>0.175</td>
<td>10776</td>
<td>(Hornick 1966, 1970)</td>
</tr>
</tbody>
</table>

• Exponential model:
 - Cryptosporidium; $k = 0.057$ (Messner et al. 2011)
Results chlorination

![Graph showing concentration over time for different bacteria species](image-url)
Results UV-based treatment

![Graph showing the concentration of C. jejuni, E. coli, S. enterica, and C. parvum over time. The graph displays cycles of concentration peaks and troughs for each bacterium, indicating effectiveness of UV treatment.]
Results

<table>
<thead>
<tr>
<th></th>
<th>Average concentration (n/L)</th>
<th>Dose (n/swim)</th>
<th>Infection risk</th>
<th>Yearly infection risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>C. jejuni</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlorination</td>
<td>6.4×10^{-5}</td>
<td>8.8×10^{-7}</td>
<td>1.7×10^{-11}</td>
<td>1.0×10^{-9}</td>
</tr>
<tr>
<td>UV-based</td>
<td>1.8</td>
<td>2.5×10^{-2}</td>
<td>4.8×10^{-7}</td>
<td>2.8×10^{-5}</td>
</tr>
<tr>
<td>E. coli</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlorination</td>
<td>6.9×10^{-6}</td>
<td>9.5×10^{-8}</td>
<td>6.0×10^{-13}</td>
<td>3.6×10^{-11}</td>
</tr>
<tr>
<td>UV-based</td>
<td>2.0×10^{-1}</td>
<td>2.7×10^{-3}</td>
<td>1.7×10^{-8}</td>
<td>1.0×10^{-6}</td>
</tr>
<tr>
<td>S. enterica</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlorination</td>
<td>7.9×10^{-5}</td>
<td>1.1×10^{-6}</td>
<td>1.8×10^{-11}</td>
<td>1.0×10^{-9}</td>
</tr>
<tr>
<td>UV-based</td>
<td>2.2</td>
<td>3.1×10^{-2}</td>
<td>5.0×10^{-7}</td>
<td>3.0×10^{-5}</td>
</tr>
<tr>
<td>C. parvum</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlorination</td>
<td>3.3×10^{-1}</td>
<td>4.6×10^{-3}</td>
<td>4.3×10^{-3}</td>
<td>1.5×10^{-2}</td>
</tr>
<tr>
<td>UV-based</td>
<td>5.2×10^{-2}</td>
<td>7.2×10^{-4}</td>
<td>6.9×10^{-4}</td>
<td>2.4×10^{-3}</td>
</tr>
</tbody>
</table>
Sensitivity analysis for *E. coli* (UV-based treatment)

- Bathers/m³: 40/500 → 10/5 (toddler or hwp)
- Turnover time: 30 → 240 min
- Treatment: 5-log → 1-log reduction
- Swimming events: 59 → 260/year (5/wk)
- Simultaneous bathers: 40 → 108
- Infected bathers: 2/40 → 11/40
- Ingested pool water: 13.7 → 51 mL
- *E. coli* in faecal matter: 0.3% → 10%
- Pathogens in faeces: 10^8 → 10^{10}
Sensitivity analysis for *E. coli*

<table>
<thead>
<tr>
<th></th>
<th>Value Ref.</th>
<th>Value worst case</th>
<th>$P[\text{inf}]$ ref</th>
<th>$P[\text{inf}]$ max</th>
<th>Value max/ref</th>
<th>$P[\text{inf}]$ max/ref</th>
<th>Influence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bathers / m3</td>
<td>12.5</td>
<td>0.5</td>
<td>1.0×10^{-6}</td>
<td>2.5×10^{-5}</td>
<td>0.04</td>
<td>25</td>
<td>625</td>
</tr>
<tr>
<td>Turnover time</td>
<td>30</td>
<td>240</td>
<td>1.0×10^{-6}</td>
<td>6.0×10^{-6}</td>
<td>8</td>
<td>5.95</td>
<td>0.7</td>
</tr>
<tr>
<td>Treatment eff.</td>
<td>0.99999</td>
<td>0.9</td>
<td>1.0×10^{-6}</td>
<td>1.1×10^{-6}</td>
<td>0.9</td>
<td>1.11</td>
<td>1.2</td>
</tr>
<tr>
<td>Swim events</td>
<td>59</td>
<td>260</td>
<td>1.0×10^{-6}</td>
<td>4.5×10^{-6}</td>
<td>4.4</td>
<td>4.4</td>
<td>1.0</td>
</tr>
<tr>
<td>Bathers</td>
<td>40</td>
<td>108</td>
<td>1.0×10^{-6}</td>
<td>2.7×10^{-6}</td>
<td>2.7</td>
<td>2.7</td>
<td>1.0</td>
</tr>
<tr>
<td>Infected bathers</td>
<td>5%</td>
<td>28%</td>
<td>1.0×10^{-6}</td>
<td>5.6×10^{-6}</td>
<td>5.56</td>
<td>5.56</td>
<td>1.0</td>
</tr>
<tr>
<td>Ingested water</td>
<td>13.7</td>
<td>51</td>
<td>1.0×10^{-6}</td>
<td>3.8×10^{-6}</td>
<td>3.72</td>
<td>3.7</td>
<td>1.0</td>
</tr>
<tr>
<td>E. coli% pathogens</td>
<td>0.3%</td>
<td>10%</td>
<td>1.0×10^{-6}</td>
<td>3.4×10^{-5}</td>
<td>33.3</td>
<td>33.4</td>
<td>1.0</td>
</tr>
<tr>
<td>Path.in faeces</td>
<td>10^8</td>
<td>10^{10}</td>
<td>1.0×10^{-6}</td>
<td>1.0×10^{-4}</td>
<td>100</td>
<td>100</td>
<td>1.0</td>
</tr>
</tbody>
</table>
Results

Moment of exposure

Influence = 14
Conclusions

• Yearly risk of infection with UV-based treatment higher than treatment with chlorination

• All risks $<10^{-4}$, except for *Cryptosporidium*

• For *Cryptosporidium*, best removal with UV-based treatment
Acknowledgements

• Financing organisations: Ministry of economic affairs, European Fund for Regional Development (EFRO), Hellebrekers Technieken, van Remmen UV Techniek, AkzoNobel Industrial Chemicals, Coram International and Sportfondsen Nederland
Thanks for your attention

Questions ?

m.g.a.keuten@tudelft.nl