

Delft University of Technology

Software Ecosystem Call Graph for Dependency Management

Hejderup, Joseph; van Deursen, Arie; Gousios, Georgios

DOI
10.1145/3183399.3183417
Publication date
2018
Document Version
Accepted author manuscript
Published in
ICSE-NIER'18 Proceedings of 40th International Conference on Software Engineering

Citation (APA)
Hejderup, J., van Deursen, A., & Gousios, G. (2018). Software Ecosystem Call Graph for Dependency
Management. In ICSE-NIER'18 Proceedings of 40th International Conference on Software Engineering:
New Ideas and Emerging Results Track (pp. 101-104). Association for Computing Machinery (ACM).
https://doi.org/10.1145/3183399.3183417
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1145/3183399.3183417
https://doi.org/10.1145/3183399.3183417

Software Ecosystem Call Graph for Dependency Management
Joseph Hejderup

Delft University of Technology

The Netherlands

j.i.hejderup@tudelft.nl

Arie van Deursen

Delft University of Technology

The Netherlands

arie.vandeursen@tudelft.nl

Georgios Gousios

Delft University of Technology

The Netherlands

g.gousios@tudelft.nl

ABSTRACT
A popular form of software reuse is the use of open source software

libraries hosted on centralized code repositories, such as Maven

or npm. Developers only need to declare dependencies to external

libraries, and automated toolsmake them available to theworkspace

of the project. Recent incidents, such as the Equifax data breach and

the leftpad package removal, demonstrate the difficulty in assessing

the severity, impact and spread of bugs in dependency networks.

While dependency checkers are being adapted as a counter measure,

they only provide indicative information. To remedy this situation,

we propose a fine-grained dependency network that goes beyond

packages and into call graphs. The result is a versioned ecosystem-

level call graph. In this paper, we outline the process to construct the

proposed graph and present a preliminary evaluation of a security

issue from a core package to an affected client application.

ACM Reference Format:
Joseph Hejderup, Arie van Deursen, and Georgios Gousios. 2018. Software

Ecosystem Call Graph for Dependency Management. In Proceedings of 40th
International Conference on Software Engineering: New Ideas and Emerg-
ing Results Track, Gothenburg, Sweden, May 27-June 3 2018 (ICSE-NIER’18),
4 pages.

https://doi.org/10.1145/3183399.3183417

1 INTRODUCTION
Software engineers reuse code to reduce development and mainte-

nance costs. A popular form of software reuse is the use of open-

source software (OSS) libraries, hosted on centralized code reposi-

tories, such as Maven1 or npm.2 In such settings, developers specify

dependencies to external library versions in a textual file, that is

then committed to the repository of the client program. Automated

programs, typically package managers, resolve the dependency de-

scriptions and connect to the central repositories to download the

specific library versions that are required to build the client program.

Library names and versions often follow de-facto conventions, such

as semantic versioning.
Several implications may arise from the fact that programs and

libraries can have dependencies on other libraries, and that those

1
https://search.maven.org/

2
https://www.npmjs.com/

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

ICSE-NIER’18, May 27-June 3 2018, Gothenburg, Sweden
© 2018 Copyright held by the owner/author(s). Publication rights licensed to Associa-

tion for Computing Machinery.

ACM ISBN 978-1-4503-5662-6/18/05. . . $15.00

https://doi.org/10.1145/3183399.3183417

dependencies are not resolved in a well-defined manner. Increas-

ingly, libraries are being used as building blocks for creating other

libraries, leading to highly interconnected ecosystems [4, 7]. The
interconnections form a graph, in which the nodes are versioned

libraries and the edges are dependencies on the libraries. The struc-

tural properties of those graphs can significantly affect the func-
tionality of thousands of end-user projects [6]. Moreover, including

arbitrary code from an online repository induces trust and security
implications; how can developers ensure that the imported code

contains no security holes? How can they know when a security

issue discovered in a transitive dependency requires an update?

Dependency networks also present challenges to library maintain-

ers: how can they assess the direct or transitive impact of their

changes?

In the recent years, we have witnessed dependency network

failures with severe implications on client programs:

• A dispute over a library name in the npm ecosystem led to

the removal of a library called leftpad. The package removal

further lead to the collapse of thousands of libraries which

directly depended on leftpad, and hence a major disruption

for client programs. After the leftpad incident, a study [6]

estimated that there exist libraries whose removal can affect

more that 30% of the core components of the network.

• A company named Equifax leaked over 100.000 credit card

records due to a dependency that was not updated. The

compromised systems included a vulnerable version of the

Apache Struts library, whose update was postponed as the

Equifax security team erroneously underestimated the im-

pact of the bug on their codebase.
3

• Malicious developers uploaded to the Python package man-

ager (PyPI) libraries whose namewas deliberately misspelled,

being almost identical to the original libraries (e.g., urllib
instead of urllib3). The intention was to steal information

from client applications of developers who had accidentally

mistyped the library name in the dependency file.

Recent research has been focused on the analysis of the evolution

of code repositories and how libraries are growing together in

a shared environment [3, 4, 7]. To study ecosystems, developers

typically build dependency graphs, in which nodes represent either

libraries or library versions. To represent a dependency (i.e. creating

an edge), researchers emulate the version resolution algorithm of

the original package manager. While this model is useful for initial

evaluations of dependency networks, it can only provide partial

information due to the following limitations:

(1) The dependency relationship in the network is on a version-

basis (e.g library Av1.2.3 depends on library B v2.3.4). Reasoning
about how a library can influence other connected libraries on a

3
https://blogs.apache.org/foundation/entry/apache-struts-statement-on-equifax

https://doi.org/10.1145/3183399.3183417
https://web.archive.org/web/20180117215836/https://search.maven.org/
https://web.archive.org/web/20180208034942/https://www.npmjs.com/
https://doi.org/10.1145/3183399.3183417
https://web.archive.org/web/20180207224424/https://blogs.apache.org/foundation/entry/apache-struts-statement-on-equifax

ICSE-NIER’18, May 27-June 3 2018, Gothenburg, Sweden Joseph Hejderup, Arie van Deursen, and Georgios Gousios

version-basis such as bug propagation is limited. (2) A dependency

on a library does not necessarily mean that the code in that library

is actually used. Providing developers with actionable information

such as security alerts on dependencies requires further analysis of

dependency relationships. (3) Dependency networks do not enable

developers (or researchers) to perform change impact analysis be-

yond a single library; this leads to lost opportunities of evaluating

problems at the ecosystem level.

In our work, we propose to extend dependency networks with
call graph information, within and across dependencies, thereby

constructing ecosystem-wide dependency network call graphs. This
takes into account how libraries are interconnected at the source

code level.

Our vision is the following: (1) Construct a dependency net-

work at the function-level granularity. (2) Evaluate the dynamics of

changes made to libraries in a dependency network from a program

analysis perspective. (3) Study and evaluate historical changes in a

dependency network.

In the following sections, we outline concepts of our call graph

based dependency network and highlight how it can enable a fine-

grained impact analysis assessment.

2 CALL GRAPH BASED DEPENDENCY
NETWORK

Most package managers for OSS libraries use a variation of seman-

tic versioning to specify dependency versions. Semantic versioning

allows developers to specify dependencies, not only as an exact

version but also a version range. The resolution of version ranges

to exact versions is time-dependent; the package manager resolves

the latest version available at the package repository at the time

the resolution was initiated. This complicates precise retrospective

studies of dependency networks and makes their results fragile. As

an example, consider a library A, with two versions: v1.2 released
in Oct 2014 and v1.3 released in Oct 2016. A library B depends

on version 1.∗ of library A. If we create the dependency graph of

the package ecosystem today, we would only resolve the depen-

dency toAv1.3, missing two years worth of time where the correct

dependency would be Av1.2.
Consequently, we need a fine-grained dependency network. For

this, we can exploit the fact that the vast majority of open source li-

braries included in dependency networks are developed on GitHub.

Instead of relying on aggregated metadata from package managers,

such as the data provided by the libraries.io service, we can ana-
lyze the commits on the dependency specification files. Using these

files, we can construct dependency networks with more details.

Following the example above, if the repository exporting library

B has received a commit c at any time between Oct 2014 and Oct

2016, then we could resolve A to v1.2 for the version created in

c . Moreover, relying on GitHub for constructing dependency net-

works will enable us to include client programs in our analysis,

thereby extending the impact of our envisioned analyses.

After obtaining high resolution dependency networks, we need

to construct call graphs for each library version that we include

in our graph. Creating call graphs can be done either with static

analysis, where possible executions are determined from analyzing

the source code or through dynamic analysis, where probes are the

dependency 1

c()
v4.5
Rev r3

a()
v1.2
Rev f3

e()
v1.2
Rev f3

b()
v1.2
Rev f3

d()
v4.5
Rev r3

u()
v4.5
Rev r3

dependency 2

Figure 1: Dependency network call graph

method invocations recorded at runtime. Our only requirement is

that the call graph construction will be able to (statically) construct

call graphs that extend beyond a single project to the transitive set

of dependencies the project specifies. This requirement is akin to

the linking process in compiled languages, and is already supported

by many tools.

Next, we need to map the call graph on the dependency network.

There are two ways to do this: i) include the generated call graph

as an attribute to a dependency network node, or ii) decorate the

call graph nodes with metadata about the dependency (e.g., the

dependency name and version). We choose the second option, as

the graph nodes are functions and represents our end goal of being

able to perform impact analysis at an ecosystem level.

By following the steps above, we arrive to the definition of our

dependency network call graph as follows:

Definition. A dependency network call graph for an ecosys-
tem is a directed and immutable graph G = (V ,C) where:

(1) V is a set of versioned functions. Each v ∈ V is a 3-tuple
< id,v, c >, where id is a fully qualified function name, v is
the version of the library and c is the commit.

(2) E is a set of edges that connects functions. Each (v1,v2) ∈ E
represents a function call from v1 to v2.

Although the dependency network shares some similarities with

the work of Hejderup and Kikas et al [5, 6], it differs in that the

network is a large interconnected call graph and the versioning is

annotated at the function call level. Figure 1 illustrates a simple

call graph based dependency network where dependency 1 depends
one dependency 2. Inside each dependency block, the nodes repre-

sent versioned functions with full function identifier, version and

commit revision. The edges in the network can be classified into in-

ternal and external calls. An external call is made from the a() node
in dependency 1 to the c() node in dependency 2. The process to de-
cide and resolve an external function call into the correct versioned

one is not trivial and is explained in the following subsection.

2.1 Network Construction
The process of constructing the network is shown in Algorithm 1.

The initial step is to select commits that include changes to the

dependency file of the repository (line 3). A change can be a new

release of the library or a change to the list of specified dependencies.

Software Ecosystem Call Graph for Dependency Management ICSE-NIER’18, May 27-June 3 2018, Gothenburg, Sweden

Algorithm 1: Network Construction

Input :git-based repository

1 G ← ∅;
2 buildNetwork r epo
3 C ← f il terDependencyCommits (r epo);
4 if C , ∅ then
5 foreach c ∈ C do
6 r ev ← checkout (c);
7 CG ← constructCG (r ev);
8 CGann ← annnoteFunctions (CG);

9 if c specifies new library version then
10 G ← G ∪ дetPrevCommitEdдes (c, CGann);

11 end
12 if c specifies a dependency update then
13 G ← G ∪ r esolveDependencies (c, G, CGann);

14 end
15 end
16 end

For each of the selected commits, the source code of the library

is checked-out when the commit was made and a call graph is

constructed from the source code (lines 6-7). The functions (i.e.,

nodes) of the call graph are annotated with information about the

commit, name and version of the library and then added to the

dependency network (line 8). Depending on the type of the change

in the processed commit, there are two sub-cases:

(1) If the change is a new release of the library, a copy of the

edges representing function calls to external libraries in the

previous version is added to the graph.

(2) If the change specifies a new dependency, the dependencies

need to be re-evaluated and edges from each function in

CGann to functions in external libraries need to be created.

The process to resolve dependencies is presented in Algorithm 2.

The dependency file is obtained and parsed from the commit (lines

3-4). For each dependency, the existing dependency network is

sliced by the dependency name, then sliced further by the version

that is resolved by emulating the resolution process in the original

package manager. The remaining step is to slice at the commit level.
The time stamp of the provided commit is extracted and the closest

commit to the time stamp in Gver is selected. The (transitive) call
graph for the processed dependency is created and links between

the processed dependency and external dependencies are resolved

and returned (line 11). After the edges are created, the process

repeats until there are no more dependencies to add in the graph.

2.2 Impact Analysis
Impact analysis helps in the determination of the subset of the de-

pendency network that is affected by a given set of changes or bugs.

The identified subset allows developers and library maintainers to

evaluate the impact within or across dependencies at the function

call level. As an example, library maintainers can assess the poten-

tial impact of a set of changes in the network before releasing a

new version. Further, developers can localize functions or methods

in the program that are implicitly affected by a critical bug in a

transitive dependency. Finally, the commit revision in the set of

Algorithm 2: Resolving Dependencies

Input :commit, G, CGann
Output : set of resolved dependency call edges

1 resolveDependencies commit, G, CGann
2 E ← ∅;
3 depf ile ← дetDependencyF ile (commit);
4 D ← parse (depf ile);
5 if D , ∅ then
6 foreach d ∈ D do
7 Gname ← sl iceByName (G, d .name);
8 ver ← r esolveV ersion (d .constraint, c);
9 Gver ← sl iceByV ersion (Gname , ver);

10 CGd ← sl iceByCommit (Gver , commit);
11 E ← E ∪ {дetDependencyCalls (CGd , CGann) };

12 end
13 end
14 return E

affected function nodes could be extended with using tools such

as git-diff or git-log to track and identify function additions,

removals or renames.

The process of identifying the affected nodes in a dependency

network is summarized in Algorithm 3. Given the name and version

of a library and the set of changed functions, the initial process is

to find the corresponding versioned functions of f in the depen-

dency network (line 3). For each versioned function, a reachability

analysis is performed that traverses the dependency network for

identifying one or more calls to the set of changed functions (line

5). The result of CGr each contains a subset of the impacted (e.g

reachable) function calls to one versioned function. The partial

impact setCGr each is added to the result inG (line 7). Finally, after

all versioned functions are processed, the impact set is returned

(line 10).

Algorithm 3: Impact Analysis

Input :A set of affected f in name & version of library

Output :Affected slice of the dependency network

1 G ← ∅;
2 impact (name, version, f)
3 F ← f indV ersionedFunctions (name, version, f);
4 foreach function fi ∈ F do
5 Gr each ← r eachabil ity (fi);
6 if CGr each , ∅ then
7 G ← G ∩CGr each ;

8 end
9 end

10 return G

3 INITIAL EVALUATION
The concepts presented in the previous section are implemented in

an early prototype in JavaScript and currently process npm-based
projects. The dependency resolution mechanism in the prototype

is based on npm’s semver4 library, and call graphs are extracted

4
https://github.com/npm/node-semver

https://web.archive.org/web/20170828172236/https://github.com/npm/node-semver

ICSE-NIER’18, May 27-June 3 2018, Gothenburg, Sweden Joseph Hejderup, Arie van Deursen, and Georgios Gousios

82cef59:anonFn:globwatch:43:27:48:14

72845fa:minimatch:minimatch:114:1:130:2

72845fa:Minimatch:minimatch:132:1:168:2

72845fa:make:minimatch:173:1:226:2

72845fa:anonFn:minimatch:212:17:214:4

72845fa:parse:minimatch:469:1:767:2

Figure 2: Impacted function calls in globwatch

from executing test cases of npm packages in Jalangi,5 which is a

dynamic analysis framework.

The initial evaluation concentrates on testing the concepts

in a small controlled setting before attempting processing at an

ecosystem-scale. The first use case evaluates the impact of a secu-

rity bug in the npm ecosystem. Towards this end, we use security

advisories from the Node Security Platform and evaluate the impact

of a bug discovered in the isaacs/Minimatch library.
6
The bug

is localized in the parse function and we obtained the affected

commits tagged with a version (e.g, all <=3.0.1) from the reposi-

tory. Using reversed dependency resolution in place of a call graph

network in Algorithm 3, led to the discovery of over 36.000 npm
packages that directly or indirectly resolve to a vulnerable version

of Minimatch; our results are publicly available.
7

We selected an arbitrary package called globwatch (v0.0.1)

from the results and checked-out the commit 82cef59 from

airportyh/globwatch8. This npm module continuously keeps

watching for file changes via a user-defined glob pattern. We ob-

tained the call graph by executing the test cases in Jalangi and

later traversed the call graph to find call-paths that implicitly use

the parse function in isaacs/Minimatch (v0.2.14/72845fa). The
impacted set resulted in two distinct call-paths, of which, the output

of one call path is presented in Figure 2 where the call is executed

from top to bottom. Each node in the figure contains the commit sha
and also the line and the column information of the function in the

source code. The line and column number information is retained

to precisely identify anonymous function (e.g anonFn) bodies in
JavaScript.

4 DISCUSSION & CHALLENGES
The sheer size of code repositories and the frequent release of li-

braries poses many challenges to the construction and maintenance

of a versioned call graph based dependency network. The concepts

presented in Section 2 imply a use of program analysis techniques

to construct, infer and traverse call graphs. Performing such an anal-

ysis at ecosystem-scale introduces several problems: (1) Obtaining a

sound or accurate call graph can be computationally expensive, thus

making the construction of the network time consuming. (2) Hav-

ing an imprecise call graph could potentially lead to false negatives

in the impact analysis. (3) The use of commit time for resolving ver-

sion ranges in Algorithm 2 could be unreliable for repositories with

5
https://github.com/Samsung/jalangi2

6
https://nodesecurity.io/advisories/118, isaacs/Minimatch is the Github identifier of

the minimatch package
7
https://archive.org/details/MinimatchNode.csv

8
https://github.com/airportyh/globwatch

improper time configuration. We intent to mitigate this by using the

build time of a commit from TravisCI-connected repositories [1].

To make the technique practical for developers and library main-

tainers, it is necessary to process ecosystems events such as changes

made to a library and their dependencies in real-time. Building a

real-time pipeline and adapting program analysis techniques to

process on an event-basis calls for modifying current tools to work

on an incremental basis.

5 RELATEDWORK
In several studies [3–7], dependency networks have been used to

study the dynamics of interconnected libraries in software ecosys-

tems. However, there is a lack of research on dependency manage-
ment, and yet, it is among some of the most common activities a

developer needs to handle. To the best of our knowledge, there

is one qualitative study by Bogart et al [2] that reasons about the

cost of changes between library maintainers and their clients. How-

ever, none of these studies focus on techniques for a fine-grained

and actionable dependency management for developers and library

maintainers.

6 SUMMARY
In this paper, we present a technique to construct and analyze

dependency relationships in a software ecosystem at the function-

level granularity. The technique combines historical dependency

data from version-controlled repositories with call graph construc-

tion to build a fine-grained representation of a dependency network.

This representation can extend program analysis to diagnose prob-

lems at an ecosystem level, such as the spread of a security bug

to affected clients or libraries by inspecting their interconnected

function call relationship. We believe that our approach points to-

wards actionable dependency management, where dependencies

and their changes are evaluated at the source code level.

7 ACKNOWLEDGEMENT
The work is part of the Codefeedr project, which is financed by

NWO with award number 628.008.001.

REFERENCES
[1] Moritz Beller, Georgios Gousios, and Andy Zaidman. 2017. Travistorrent: Synthe-

sizing travis ci and github for full-stack research on continuous integration. In

Mining Software Repositories (MSR), 2017 IEEE/ACM 14th International Conference
on. IEEE, 447–450.

[2] Christopher Bogart, Christian Kästner, James Herbsleb, and Ferdian Thung. 2016.

How to break an API: Cost negotiation and community values in three software

ecosystems. In Proceedings of the 2016 24th ACM SIGSOFT International Symposium
on Foundations of Software Engineering. ACM, 109–120.

[3] Eleni Constantinou and Tom Mens. 2017. An empirical comparison of developer

retention in the RubyGems and npm software ecosystems. Innovations in Systems
and Software Engineering 13, 2-3 (2017), 101–115.

[4] Alexandre Decan, Tom Mens, and Maëlick Claes. 2017. An empirical comparison

of dependency issues in OSS packaging ecosystems. In Software Analysis, Evolu-
tion and Reengineering (SANER), 2017 IEEE 24th International Conference on. IEEE,
2–12.

[5] Joseph Hejderup. 2015. In dependencies we trust: How vulnerable are dependencies
in software modules? Master’s thesis. Delft University of technology.

[6] Riivo Kikas, Georgios Gousios, Marlon Dumas, and Dietmar Pfahl. 2017. Struc-

ture and evolution of package dependency networks. In Proceedings of the 14th
International Conference on Mining Software Repositories. IEEE Press, 102–112.

[7] Erik Wittern, Philippe Suter, and Shriram Rajagopalan. 2016. A look at the

dynamics of the JavaScript package ecosystem. In Mining Software Repositories
(MSR), 2016 IEEE/ACM 13th Working Conference on. IEEE, 351–361.

https://web.archive.org/web/20180209101046/https://github.com/Samsung/jalangi2
https://web.archive.org/web/20180209101204/https://nodesecurity.io/advisories/118
https://archive.org/details/MinimatchNode.csv
https://web.archive.org/web/20180211123144/https://github.com/airportyh/globwatch

