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Summary

Preliminary ship design (or early stage design in US terminology) is the very first step
in designing a new ship. In this stage ship designers attempt to find an affordable
balance of the future owner’s (customer or operator) ambitions and operational needs.
This balance is then translated into more tangible design requirements. However, the
search for such a balance and the accompanying design requirements is not a trivial
task.

Ships, and service vessels in particular, are considered as some of the largest,
most complex, moving man-made structures which often need to operate for extended
periods of time in a hostile environment. Not surprisingly, the preliminary design
of such ships is also inherently complex. The search for a balanced design solution
benefits from early insight into the complex interrelations and interactions between the
design requirements, the accompanying solutions, and their performances and cost.
Insight which is often gained by generating and studying numerous design alternatives
with varying requirements, performances, and costs, in a broad and investigatory
phase of preliminary design called concept exploration. However, the complexity of
ships and the design problem also challenge concept exploration.

First, generating numerous design alternatives (i.e., with different characteristics,
performances, and costs) is a combinatorial problem of large dimensionality. Second,
the identification of promising solutions requires the naval architect to express what
it is that we are looking for (i.e., what solution characteristics are desirable, and how
do these contribute to the overall performance). However, defining, quantifying, and
balancing such figures of merit is a challenge of its own, and this was the reason to start
concept exploration in the first place. Third, the complexity of ship design creates a
disconnect between the design space and the solution and performance space. These
two domains are linked through complex synthesis, hence the many interrelations
between them are not easily elucidated.

As a result of the above challenges, exploration efforts are currently often limited
to investigating only a few alternatives. Large and potentially more desirable areas
of the design space are thus left un-explored. This limits the amount of insight that
can be gained from the exploration effort.

The above challenges hinder thorough concept exploration and thereby the search
for affordable and well-performing designs. Hence, this dissertation presents a novel,
interactive, and evolutionary (progressive) concept exploration approach that is better
able to generate and explore a large number of desirable designs. The approach re-
uses gained insight to interactively adjust a set of criteria that are used to gradually
steer the exploration effort towards more desirable design solutions.
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The proposed interactive exploration approach has several anticipated benefits.
First, there is no need for a well-defined a-priori definition of “what to look for” as
this is gradually defined and refined during the exploration itself. Second, the focus
of the exploration can be interactively adjusted based on new emerging knowledge.
The naval architect may selectively “zoom-in” or “zoom-out” on specific sets of solu-
tions. This should promote a broader exploration, covering more and more diverse
solutions. Finally, the concurrent exploration of a large (and growing) set of diverse
design solutions should provide the naval architect with a better understanding of
the relations between the design space and the resulting solution and performance
spaces. In addition, the ability to dynamically adjust the criteria used to steer the
exploration allows the naval architect to quickly assess the effects of decisions made.

The approach is centred around a progressive search work-flow consisting of five
main steps. First, the naval architect defines an initial set of criteria describing de-
sirable characteristics of the sought after design solutions. Second, these criteria are
used in a search algorithm and ship synthesis model to actively search for and gen-
erate design solutions “best” matching the criteria. Third, the generated designs are
interactively explored in a dedicated post-processing tool. This tool is geared to-
wards identifying insight into the often implicit relations between the applied criteria,
the resulting design solutions, and their (performance) characteristics. Fourth, this
gained insight is used by the naval architect to adjust and/or expand the initial set of
criteria. Finally, this new set of criteria is used to select desirable design solution(s).
If these are not identified by the naval architect, the exploration process is continued
by using the new set of criteria to generate a new set of designs (step 2).

Three core elements were developed to implement the proposed interactive ap-
proach. First, an existing packing-based architectural ship synthesis model was altered
to enable the generation of large sets of designs, covering a broad range of varying
options. The following options may be varied: the hull including its type, shape,
and dimensions; systems and spaces, including their number, type, and size; overall
required performances such as speed and endurance; the crew size as a function of
chosen systems; and the configuration and layout of systems and spaces within and on
the ship’s hull. These variations allow the naval architect to explore a large number
of ship characteristics using a single integrated synthesis model.

Second, an interactive data exploration tool was developed which allows naval ar-
chitects to analyse the results of the packing-based ship synthesis model in detail. The
tool is geared towards gaining insight into the complex and often implicit interactions
and relations between the applied variations and criteria and the resulting solutions
with their characteristics and performance. It allows designers to link criteria to solu-
tions. That is, given a set of criteria, identify which design solutions and by what
characteristics these are met, or vice-versa. The tool also aids in identifying if and
when criteria might conflict (i.e., their combination does not give a feasible design
solution). Dynamic filtering sets and interactive data brushing techniques allow a de-
signer to study which criteria require changes to resolve a conflict and remain feasible.
Moreover, each generated design is available as a 3D model that can be interrogated
by the user. This proved valuable in identifying the underlying mechanisms of why
conflicts occur.

Third, an objective-based feedback mechanism was developed which uses the
(gradually) adjusted criteria to steer the ship synthesis model towards more and more
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desirable design solutions. In each iteration of the progressive approach, the adjusted
criteria are used to update the objective functions of the (genetic) search algorithm
that is coupled with the synthesis model. These continuously updated objectives give
incentive to design solutions which: (i) meet as many of the current criteria as pos-
sible, and (ii) almost meet the current criteria (e.g., this is implemented by adaptable
fuzzy utility functions for each criterion). In addition, criteria for numerical design
characteristics (e.g., speed, length, or centre of gravity) are separated from more ar-
chitectural characteristics (e.g., relative or global system positions, or the number or
type of a system) in two distinct objectives. Hence, the multi-objective formulation
also gives incentive towards identifying solutions with a trade-off of architectural and
numerical criteria.

The integrated interactive evolutionary concept exploration approach was applied
in two test-cases. The first assessed the impact and interactions of a single design
criterion (damage length) on the size and arrangement of a mine-countermeasures
vessel (MCMV). The second applied the approach to a full concept exploration effort
for a MCMV. These test-cases showed that the developed approach was indeed able to
aid a designer to generate and identify desirable well-thought through design solutions
and their associated criteria and characteristics. Moreover, the test-cases proved that
insights gained during the process could directly be re-used to focus or alter the
exploration’s “direction”. For example, in the second test-case, insight of high impact
design variations was used to quickly identify an initial set of affordable yet diverse
solutions. Subsequent iterations of the approach could then focus on each of these in
more detail.

To summarise, the novel interactive evolutionary concept exploration approach
presented in this thesis, allows a naval architect to generate and select designs based
on insight gained during exploration. This allows the concept exploration effort to
be interactively steered towards generating and investigating designs that are deemed
promising and desirable. Contrary to methods that explore towards solutions match-
ing a perceived goal, the presented approach helps the naval architect understand
the decisions and path taken towards a gradually elucidated goal with accompanying
solutions. Thereby increasing acceptance of the final solutions.
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Samenvatting

Het conceptontwerp is het eerste stadium in het ontwerpen van een nieuw te bouwen
schip. Deze fase richt zich op het identificeren van een technisch haalbare en betaal-
bare balans van de operationele ambities van de toekomstige eigenaar van het schip.
De balans van deze ambities kan dan worden vertaald naar operationele en technis-
che eisen waaraan de oplossing zou moeten voldoen. Echter, het vinden van een
balans tussen de operationele ambities van de klant, de resulterende ontwerp eisen,
en de daaruit volgende oplossingen (met bijbehorende prestaties en kosten) is geen
eenvoudige taak.

De zoektocht naar deze balans wordt bemoeilijkt door de complexiteit van het
ontwerpprobleem. Schepen, en werkschepen in het bijzonder, worden vaak gezien als
’s werelds grootste en meest complexe door de mens gemaakte bewegende en drijvende
systemen. Bovendien opereren ze vaak voor langere periodes autonoom in een ruige
werkomgeving. Het ontwerpen van een schip is dan ook een lastige opgave waarbij ver-
schillende complexe systemen en hun randvoorwaarden, moeten worden gëıntegreerd
in een coherente oplossing die als geheel goed moet presteren. Dit maakt de relaties
en interacties tussen de ontwerpeisen en de oplossingen (en hun prestaties en kosten)
vaak complex en impliciet. Dit bemoeilijkt het balanceren van de operationele am-
bities van de klant. Het vroegtijdig inzichtelijk maken van deze relaties en interacties
is dus van grote waarde.

Inzicht over de relaties en interacties tussen eisen, oplossingen en hun prestaties en
kosten, wordt meestal verkregen door het genereren en bestuderen van een groot aan-
tal ontwerpen met variërende eigenschappen en prestaties. Deze divergerende studies,
die plaats vinden tijdens het vroegtijdige ontwerpproces, noemt men conceptexplor-
atie. Echter het genereren en vergelijken van een groot aantal diverse ontwerpen
tijdens conceptexploratie wordt ook bemoeilijkt door de complexiteit van het schip
en het ontwerpprobleem.

Allereerst, het vervullen van een taak of operatie met een schip kan vaak op
meerdere manieren, met verschillende systemen, die op andere wijze zijn ingedeeld en
gëıntegreerd. De ontwerpruimte is dus groot en daarmee is het aantal oplossingen een
combinatorisch probleem van de mogelijke interessante variaties.

Ten tweede, om een veelbelovend ontwerp te identificeren en selecteren nadat het
is gecreëerd, moet er een uitspraak worden gedaan over welke eigenschappen wenselijk
zijn. Dat wil zeggen, welke, en op wat voor wijze, eigenschappen en prestaties van een
ontwerp bijdragen tot de algemene doelstelling. Echter, het definiëren, kwantificeren,
en balanceren van de verschillende ontwerpdoelstellingen is een probleem op zich.

Ten derde, de complexiteit van het ontwerp van een schip zorgt voor een ontkop-
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peling tussen de ontwerpruimte en de oplossingen met hun prestaties en kosten (wat
volgt uit de integratie van verschillende combinaties van variabelen door middel van
synthese). Dit bemoeilijkt de interpretatie van de vele onderlinge verbanden die be-
staan tussen variabelen, oplossingen en hun prestaties en kosten.

De bovengenoemde problemen zorgen ervoor dat ontwerpers maar een klein deel
van de mogelijke ontwerpruimte en dus ook ontwerpalternatieven en hun prestaties
kunnen bekijken. Dit beperkt mogelijk de hoeveelheid inzichten die kunnen worden
verkregen uit conceptexploratie wat nadelig is voor het identificeren van een technisch
haalbare en betaalbare balans van operationele ambities.

Dit proefschrift presenteert daarom een nieuwe interactieve en stuurbare concep-
texploratie methode. Met deze methode is de ontwerper in staat is om tijdens con-
ceptexploratie veelbelovende ontwerpen te genereren, identificeren, en selecteren, op
basis van de inzichten die tijdens het proces worden verkregen. De methode gebruikt
een dynamische set van criteria om het genereren van ontwerpen aan te sturen. Deze
set van criteria wordt geleidelijk aangepast op basis van de verkregen inzichten uit
de exploratie. Hierdoor kan de richting van de conceptexploratie interactief worden
aangepast al naar gelang van wat er belangrijk wordt geacht door de ontwerper.

Dit biedt enkele voordelen. Allereerst, er is geen noodzaak om vooraf een uits-
praak te doen over welke karakteristieken een veelbelovend ontwerp omvat. Dit wordt
geleidelijk opgebouwd en verfijnd tijdens de exploratie op basis van nieuw verkregen
inzichten. Ten tweede, de richting van de exploratie kan interactief worden aangepast.
Een ontwerper kan dus naar eigen inzicht op delen van de ontwerp- en oplossingsruimte
in- en uitzoomen. Er kan dus zowel breed als gericht worden gezocht naar potentiële
oplossingen. Tenslotte, het gelijktijdig bestuderen van een grote (groeiende) set van
diverse ontwerpen, die al dan niet voldoen aan een set van wisselende criteria, stelt de
ontwerper in staat om inzicht te verkrijgen in de relaties tussen de gestelde criteria,
de mogelijke oplossingen en hun eigenschappen. Bovendien, door criteria te wijzigen
tijdens de exploratie, kan de invloed van deze wijziging op de beschikbare oplossingen
en hun prestaties snel worden bekeken.

De ontwikkelde methode is gebaseerd op een geleidelijk zoekproces wat bestaat uit
vijf geëntegreerde stappen. De ontwerper begint in stap 1 met het vaststellen van een
initiële set van (verwachte) veelbelovende criteria. Deze criteria worden in stap 2 door
een zoekalgoritme gekoppeld aan een ontwerpsynthese model om zo actief ontwerpen
te genereren die zo goed mogelijk aansluiten met de gestelde criteria. De gegenereerde
ontwerpen kunnen hierna in stap 3 door de ontwerper worden bestudeerd in een post-
processing exploratie tool om zo inzicht te krijgen in de relaties tussen de gestelde
criteria en de daaruit volgende ontwerpoplossingen en hun eigenschappen. Dit inzicht
stelt de ontwerper vervolgens in staat om in stap 4 de criteria uit te breiden of aan
te passen naar gelang de verdere richting van de exploratie. Deze hernieuwde set
van criteria kan worden gebruikt in de laatste stap (5) om veelbelovende ontwerpen
te selecteren of, indien deze nog niet gevonden zijn, om de exploratie verder aan te
sturen door een nieuwe verzameling ontwerpen te genereren (zie stap 2).

De bovengenoemde stappen zijn gëıntegreerd in een conceptexploratie tool die
bestaat uit drie hoofd onderdelen: een ontwerpsynthese model, een post-processing
data exploratie tool, en een terugkoppeling van criteria naar het zoekalgoritme en het
ontwerpmodel.

Voor het genereren van ontwerpen wordt gebruik gemaakt van een bestaand op
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“packing” problemen gebaseerd ontwerpsynthese model. Dit model is aangepast zodat
het in staat is om een grote variëteit aan ontwerpen met verschillende systemen,
indelingen en eigenschappen te genereren. Opties die kunnen worden gevarieerd zijn:
het romp type, vorm en afmetingen; systemen en ruimtes die nodig zijn in het schip,
inclusief hun aantal, type en afmetingen; de algemene vereiste prestaties van het schip
zoals snelheid en bereik; de hoeveelheid bemanning die weer afhangt van de geplaatste
systemen; en tenslotte de indeling en configuratie van de systemen en ruimtes in het
schip. Deze variaties stellen de ontwerper in staat om een zeer brede ontwerpruimte
af te vangen met één gëıntegreerd ontwerpmodel.

Het tweede onderdeel is een post-processing data exploratie tool waarmee de ge-
genereerde ontwerpen en hun eigenschappen kunnen worden bestudeerd. De tool is
specifiek gericht op het verkrijgen van inzicht in de complexe (vaak impliciete) inter-
acties tussen de gemaakte ontwerpvariaties, de gestelde criteria, en de daaruit volgende
oplossingen. Allereerst kunnen criteria gekoppeld worden aan oplossingen. Met een
set van criteria kan een selectie van de mogelijk oplossingen worden gemaakt, of door
eigenschappen van oplossingen te beschrijven kan een set van haalbare criteria worden
gëıdentificeerd. Ten tweede is het ook mogelijk om te onderzoeken of en wanneer de
gestelde criteria in conflict zijn (er bestaan geen technisch haalbare oplossingen die
aan alle criteria voldoen). Ten derde, door gebruik te maken van dynamische filters
kan er snel worden gekeken welke criteria moeten worden aangepast in het geval van
een conflict. Ten slotte, ieder ontwerp is beschikbaar als coherent 3D model (en dus
niet alleen als een numerieke opsomming van eigenschappen). Dit stelt de ontwerper
in staat om zijn scheepsbouwkundige kennis te gebruiken om te achterhalen waarom
een conflict zich voordoet. Dat wil zeggen, uitzoeken hoe criteria zich uiten in de
integratie van de verschillende systemen en eigenschappen van het schip.

Het laatste onderdeel van de methode bestaat uit een feedback mechanisme dat in
staat is om de (aangepaste) criteria te hergebruiken voor het genereren van nieuwe en
meer gewenste ontwerpen. Dit gebeurt door in iedere iteratie van het geleidelijke zoek-
proces de doelfuncties van het zoekalgoritme aan te passen op basis van de gestelde
criteria. De doelfuncties geven voorkeur aan ontwerpen die aan alle, een deel van,
of bijna voldoen aan de gestelde criteria. Zo wordt er actief gezocht naar ontwerpen
die voldoen aan de criteria, of indien dit niet mogelijk is, naar mogelijke compromis-
sen. Dit bevordert op zijn beurt weer het bestuderen van de haalbaarheid van de
criteria en daarmee het inzicht in de relaties tussen criteria, ontwerpoplossingen en
hun eigenschappen.

De gëıntegreerde conceptexploratie tool is toegepast in twee testcases. De eer-
ste bekeek de impact van een eis gesteld aan de schadelengte op de afmetingen en
globale indeling van een mijnenbestrijdingsvaartuig. De tweede casus bekeek de ex-
ploratie van een grote ontwerpruimte voor een toekomstig mijnenbestrijdingsvaartuig.
Beide cases lieten zien dat de ontwikkelde methode in staat is om de ontwerper de
ondersteunen in het genereren en selecteren van gewenste ontwerpoplossingen tijdens
conceptexploratie. Het geleidelijk aanpassen van criteria op basis van nieuwe in-
zichten zorgt hierbij voor een goed doordacht en beter geaccepteerd eindresultaat.
Bovendien liet de tweede testcase zien dat inzicht over “design drivers” direct kon
worden (her)gebruikt om enkele betaalbare alternatieve oplossingen te selecteren. De
ontwerper kon vervolgens de exploratie richting elk van deze alternatieven sturen om
zo meer zekerheid over de eigenschappen en gestelde criteria van deze ontwerpen te

xi



verkrijgen.
Samengevat, de gepresenteerde interactieve en stuurbare conceptexploratie meth-

ode stelt de ontwerper in staat om ontwerpen te genereren en selecteren door gebruik
te maken van inzicht verkregen tijdens de exploratie. De exploratie kan zo geleidelijk
richting veelbelovende en meer gewenste ontwerpoplossingen worden gestuurd, zonder
een vooraf geformuleerde uitspraak over de wenselijke eigenschappen van een mogelijke
oplossing. De methode onderscheidt zich door niet te exploreren naar oplossingen
voor een gegeven doelstelling, maar door geleidelijk te exploreren richting de gewen-
ste doelstelling en de daarbij behorende oplossingen. Dit proces bevordert bovendien
de acceptatie van de uiteindelijke oplossing.

xii



Chapter 1

Introduction

“We apprehend that it is the object of our labours, as
it is of science, to endeavour to produce the best effects
with given means.”

– Chatham Committee of Naval Architects (1842)

The epigraph above summarises what should be the core business of naval architecture.
When designing a new vessel the ship designer supports the customer in identifying a
suitable balance between the required need and the available budget (i.e., in search of
a cost-effective design solution). However, searching for and describing such balance
is a far from trivial task.

Ships, and service vessels in particular, are often pertained as the largest and
most complex moving man-made structures that must operate autonomously in some
of the harshest environments known to mankind (Andrews, 1998). Not surprisingly,
the design of a ship is an inherently equally complex process involving many different
engineering disciplines.

Naval architects often take an integrating and coordinating role in the design
process, attempting to combine the efforts of all different engineering disciplines and
project stakeholders into a coherent and cost-effective design solution. A task which
may benefit from timely insight into the interrelationships of customer needs, the
accompanying requirements, and matching design solutions, to support early decision
making. Insight which may be gained by iteratively creating and comparing concept
designs covering a range of varying needs and thus also varying design requirements.
This process is known as concept exploration, a difficult undertaking which takes place
during a design phase termed as preliminary ship design (or early stage design in US
terminology).

However, due to the complex nature of ship design, and the complexity of a ship
itself, the task of concept exploration can be troubled by several issues. Among
these are possible issues regarding: an ill-defined problem definition, the large degree
of preliminary design freedom and hence increased problem dimensionality, and the
intricate interrelations between design aspects due to the complexity of the ship itself.
These issues possibly limit the extent of exploration efforts, and hence may also limit
the amount of insight that can be gained. This may force designers and stakeholders
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2 INTRODUCTION

to make ill-considered decisions which may cause problems down-stream in the design
process.

The goal of this dissertation is to develop and demonstrate the benefits of an inter-
active evolutionary design approach to concept exploration. By progressively reusing
gained insight from exploration, this approach should allow designers to gradually fo-
cus the exploration effort towards more desirable design solutions. Hence an initially
ill-defined problem is gradually re-defined during the exploration. Also, the ability
to re-focus the exploration effort during the process should help overcome the dimen-
sionality issues. Lastly, interactive exploration should provide a means of identifying
and understanding the intricate relationships between design requirements and the
resulting solutions. This insight then provides a rational and informed, rather than
intuitive, basis for making large and defining decisions regarding these relations at an
early stage.

However, before such a novel approach can be developed, there is a need to under-
stand the nature of complex ships, preliminary ship design, and concept exploration,
in more detail. This will illustrate both the importance and challenges of concept
exploration in ship design and it forms the basis and motivation for this work.

1.1 Preliminary ship design

Before describing the nature of preliminary design, it is worthwhile to consider this
phase’s position in the design process. Many references describe and discuss the ship
design process in detail (e.g., Brown, 1991; Andrews, 1994; Erikstad, 1999). Although
the terminology often varies amongst references, most describe three main consecutive
design phases which take place before construction:

1. Preliminary design. The earliest and initial phase of design where a balance
between customer ambitions (needs), available budget, and possible solutions
is sought. The above references characterise this phase as investigatory and
initially diverging as to consider a broad number of solutions matching varying
levels of customer ambition. It is undertaken by the customer (i.e., future owner,
vessel operator) often with support by (in-house) ship designers. The results of
the initial investigatory studies are then used to focus towards and select one or
several potential solutions which are then worked out in more detail. Finally,
it is the customer who chooses which of these well thought through solution is
selected for the next phase.

2. Contract design. A single design solution is worked out in sufficient detail to
describe a contract and determine a contracted price. This phase is mostly un-
dertaken by, or in close co-operation with, a shipyard who assesses producibility
and cost.

3. Detailed (engineering) design. This phase involves the translation of the con-
tract design towards a design definition suitable for production. It involves the
generation of detailed engineering and production drawings. Often, this phase
overlaps with the construction of the vessel itself which may start well before
the last engineering drawings are completed.
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As mentioned, it is in the preliminary phase where a balance between the cus-
tomer’s ambitions (needs) and the available budget must be found, and where pos-
sible cost-effective design solutions need to be identified. To do so, the naval architect
first attempts to define and then translate the customer’s ambitions into a set of
design requirements which provide a more tangible description of the to-be-designed
ship. These requirements often need to be traded off so that, when they are in-
tegrated, they produce a technically feasible, operationally effective, and affordable
solution. However, finding such a balance between ambitions and budget, and trading
off requirements so that they produce technically balanced solutions, is an involved,
labour-intensive, and difficult task. This can be attributed to the complexity associ-
ated with both the product (a ship) and the process (preliminary ship design).

Ships, and service vessels in particular, are complex, multi-functional and mostly
one-off designs (Figure 1.1). Service vessels perform multiple tasks in varying condi-
tions by making use of their specialised systems and sub-systems. For example: float-
ing production storage and offloading units (FPSOs) will use their complex on-deck
facilities to separate hydrocarbons and their mooring systems to remain on station
even in harsh conditions; naval ships use sensor and weapon systems for various mil-
itary operations; and heavy-lift vessels use cranes for lifting large and heavy cargo,
both on and off-shore. Service vessels also operate autonomously for, depending on
their tasks, considerable periods of time. Hence, these vessels often have larger ac-
commodation spaces with additional support systems compared to conventional cargo
vessels, which further adds to the design’s complexity (Pawling, 2007).

Figure 1.1: Two complex multi-functional service vessels: the heavy-lift crane vessel
Aegir (left) and the Joint Logistics Support Ship HNLMS Karel Doorman refuelling

the frigate HNLMS Tromp (right).

Not surprisingly, the complexity of a ship itself adds to the difficulty of identify-
ing technically feasible solutions, which in turn complicates the search for a balance
between customer ambitions and budget. Identifying “what” this balance actually
should be, poses a large challenge in itself. The following characteristics illustrate
why (Andrews, 1998; Erikstad, 1999; Pawling, 2007; van Oers, 2011b,a; DeNucci,
2012; Gillespie, 2012):

• Ill-defined. One could argue that meeting the customer ambitions and budget
is a clear goal of design. Nevertheless, the initial description of the customer’s
ambition are often incomplete, vague, qualitative, and conflicting. There is no
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clear and definitive problem formulation that, when followed, will result in a
single “right” solution for the customer. This led Andrews (2003) to categorise
the preliminary design problem as a wicked problem, a particular form of ill-
defined and ill-structured problem which has no clear goal, no stopping criteria,
and has no clearly definable “right” answer (Rittel and Webber, 1973; Simon,
1973; Dorst, 2003). As such, defining and understanding the problem itself, is
a challenge on its own.

Missions

Operations

Functions

Systems

Sub-systems

Configuration

Performance

Scenario

Effectiveness

Requirements

Solution

verify

simulate

validate

Figure 1.2: System engineering V diagram including the role of requirements, ad-
apted from (van Oers, 2011b)

• Dimensionality. Identifying a balance of the customer’s ambition (needs) creates
a problem of high dimensionality. This can be illustrated with the system engin-
eering “V” diagram which is used as a tool by designers when decomposing the
needs into more tangible design requirements, accompanying design solutions,
and sub-solutions (e.g., systems, components, and configurations). An example
of such an engineering “V” diagram is given in Figure 1.2.

At the highest level of the V diagram, finding a balance between the desired
missions, their effect, and the budget is the main goal. However, a mission can
be performed with different operational concepts. Similarly, different functions
may perform equal operations, and different system solutions can be used to
execute a function. For example, mine-hunting can be performed with a manned
concept in which case a RHIB and divers can be used, or an unmanned concept
in which case remotely operated vehicles (ROVs) may be used. Hence, when
decomposing from missions down to systems (and sub-systems or components),
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with the associated requirements, each step may introduce new variations.
This large degree of freedom at multiple levels of the design definition quickly

results in a combinatorial explosion of the possible design solutions which poten-
tially fulfil a good balance at the highest level (i.e., missions and effectiveness).
Nonetheless, generating and comparing a large number of diverse design solu-
tions provides beneficial insights which can aid in identifying such a balance.

• Interactions. There are many complex dependencies and interrelations between
requirements which follow from the need to have a technically feasible design.
That is, any design should at least obey the rules of physics, the basic prin-
ciples of naval architecture, and comply with the required rules and regulations,
in order to be considers as technically feasible. Hence not all combinations of
requirements are possible. For example, they may conflict (e.g., high speed and
low cost) or even turn out to be technically infeasible, or operationally use-
less. This indicates that requirements cannot be studied independently and are
subject to changes when more (detailed) information about their interactions
and their operational, technical, and cost impacts becomes available. Therefore,
preliminary design calls for iterative approaches where changes to requirements
and the resulting effects are assessed in various cycles. This allows designers to
investigate their mutual influences, their effect on the solutions and their feas-
ibility, and hence also how they might be changed when trade-offs are required.

Figure 1.3 adapted from Mavris and DeLaurentis (2000) illustrates the import-
ance and influence of the preliminary design stage. Although, initially the problem
knowledge is still low (e.g., the amount of detailed information available, or the level
of understanding interactions of requirements), it is in the early stages where most
large and defining design decisions are made. This quickly reduces the remaining
freedom to adapt the design and locks in a large amount of the cost. Hence, prema-
ture decisions are likely to cause large design changes and thus may cause large cost
overruns in later stages when it turns out things need to change. Several references
have produced similar figures for different engineering fields (e.g., see Blanchard et al.,
1990; Andrews et al., 1996; Nordin, 2014).

In the context of (preliminary) ship design Figure 1.3 does miss some relevant
information. Specifically, not shown are the effects caused by major decision moments
or the effects of the applied design approaches and processes. Especially during the
preliminary stage, major defining decisions will cause drops in the design freedom
curve, and until the next decision is made design freedom is expected to remain
roughly equal. Transitions from one stage to the next will likely also cause drops
in design freedom as often different approaches (and design tools) are used in each
stage. Also missing is the level of definition used in each stage, which is linked to the
adopted design approach. Generally, the level of definition increases from one stage
to the other roughly inversely to the level of design freedom available. For example,
a more detailed definition is often regarded as less flexible as it may limit making
major changes to the design given finite time and resources (Andrews and Dicks,
1997; Pawling, 2007; van Oers, 2011b). In summary, although Figure 1.3 emphasizes
the importance of preliminary design, the shape of its curves may differ depending
on the stage and adopted design approach. Nonetheless, in support of early decision
making, an increased problem knowledge is considered advantageous.
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Figure 1.3: A generic design timeline, after (Mavris and DeLaurentis, 2000)

The preliminary design process is fed with information and insights from support-
ing design studies, which are used to assess the feasibility, performance, and cost of
the changing requirements and accompanying solutions. The insights into the com-
plex interrelations of requirements and the design are generally gained by iteratively
creating and studying numerous concepts covering a broad range of possible options.
A task which is commonly referred to as concept exploration.

1.2 Concept exploration

Concept exploration or design space exploration are terms used to describe the broad
and diverging studies which support the task of finding a well-balanced set of design
options and accompanying design requirements. Once integrated, these should result
in the design solution the customer actually wants and needs.

Typically, during exploration designers perform a series of “what-if” scenarios to
help understand the lay and limits of the design and performance space, thereby
potentially revealing areas where a good balance between required performance and
cost may be expected. In general, this is achieved by making systematic variations
to design options and performance requirements while assessing the effect of these
variations on the design and performance space (Devanathan and Ramani, 2010).

Unfortunately, there are several difficulties and challenges which currently limit
the possibility of performing large and thorough concept exploration studies during
the preliminary design of complex ships. These are covered first, as they form the
main motivation of this dissertation. They are further discussed in Chapter 2.

1.3 Challenges faced during concept exploration

1.3.1 The number and diversity of design options

As mentioned earlier, there are many design “options” that are considered and varied
during exploration. These variations follow from a higher level perturbation of the
missions, operational concepts, and functions (see Figure 1.2). Down the road, this
requires variations in (sub) solutions. Not only do all these variations contribute to
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an increased problem dimensionality, they also require additional time to solve and
evaluate. Moreover, the large diversity of the varied options can also be problematic.
Methods and tools used for concept exploration must cope with this increased variety
and dimensionality.

Some examples of options which are typically varied are:

• Ship performance levels. Variations of required whole ship performance levels
which should be met by the developed solutions. Examples are, changes to re-
quired (transit) speed, range on fuel, or mission endurance. These variations
follow from a higher level perturbation of operational concepts and the associ-
ated operational requirements.

• Hull. Variations of type, shape, and main dimensions of the hull. Different hull
types and sizes can allow other general arrangements of systems and spaces.
Hull shape and size also influence performance aspects, such as, calm-water
resistance, motions, and added resistance in waves.

• Systems. Variations in type, size, and number of systems that are used to ac-
complish functions. Moreover, by varying systems the functional capability and
performance of the design solutions can be changed. This allows the investiga-
tion of trade-offs between systems and capability.

• Configuration and arrangement. Integration of the above options into a coherent
solution including a preliminary general arrangement of the main systems and
spaces.

To assess overall ship characteristics and performance (e.g., cost, resistance and
propulsion, or seakeeping and motions), these varying design options must be in-
tegrated, through synthesis, into coherent concept solutions. Only then can the per-
formance of the integrated design solutions be compared to the required functions
and desired missions. Given the number of design options under considerations, this
quickly results in a combinatorial explosion of the number of possible design solutions
which all need to be assessed.

Generally, designers may resort to simplifying the design problem by quickly lim-
iting and decreasing the number of options under consideration. Yet, this directly
opposes the basis of thorough and preliminary concept exploration. That is, to cover
a large and diverse set of design options and thereby identify potentially unexpected,
yet promising, solutions while gaining insight into the problem.

1.3.2 Difficulty of defining and trading design objectives

Buonanno (2005) argues that one difficulty of concept exploration is the definition
of relevant figures of merit, that is, the design objectives and goals. However, the
challenge lies not only in defining the objectives. Even if it is possible to define a
clear set of relevant objectives, then they must still be traded among each other to
describe and arrive at the “best” solution satisfying all individual objectives at their
appropriate levels of performance. However, in the context of ship design, this is not
a trivial task.

First, as mentioned in Section 1.1 many characteristics of a ship interact and
conflict, making them difficult to combine into an overall goal. For example, a vessel
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with a high required speed and long range will likely have a low payload capacity,
while a ship with a large payload capacity and long range will have a lower speed.
So, even if it is determined that speed, range, and payload are the individual design
goals, their combined goal is not easily determined, as it requires a trade-off (i.e.,
what are acceptable levels for each individual objective). This concept of multiple
(often conflicting) design objectives is easily explained through a classical illustration
(Figure 1.4). Defining how to trade all these conflicting objectives (and their required
levels) such that their combination defines a desirable design solution, is a challenge.

Figure 1.4: Submarine design for different “objectives”, courtesy of Commander
Boomstra (RNLN)

In addition, many performance indicators cannot easily be calculated. The op-
erational performance of a frigate, for instance, depends on many aspects, such as:
the (future) mission scenario; the number and type of weapon systems; the sensor
capability; crew size and readiness; environmental conditions; and so on. Hence, the
evaluation of performance measures often requires complex calculations and simula-
tions to analyse even simple operational scenarios (e.g., see Decraene et al., 2010;
McKeown, 2012; Kaymal, 2013). Moreover, even when these performance figures are
obtained, it is still a challenge to evaluate the combined “added value” of those fig-
ures (Brown, 1987). For example, consider the added value of a day of patrolling of
a coastguard cutter? In this case, simply considering the best merits as an objective
is clearly infeasible. This is something which is particularly relevant when assessing
the effectiveness of a naval ship concepts.

Also, some objectives or criteria are not easily quantified, that is, they may be
based on subjective evaluation of “softer” characteristics. Aesthetics is a prime ex-
ample. For example, Roach and Meier (1979) discuss the role of aesthetics in Cold
War warship design. Also, DeNucci (2012) showed that designer preference and even
company policies can play a large role in the design of ships and their general ar-
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rangements.

Andrews (2007) refers to such “softer” aspects of ship design as style, which differ
from the more traditional, and also more easily quantified, characteristics such as: sta-
bility, speed (resistance and propulsion), seakeeping, and strength (structures). Non-
etheless, style aspects are not only typified as unquantifiable information. Pawling
et al. (2013, 2014) argue that style aspects are also characterised by their cross-cutting
nature. That is, they have many interactions with, and therefore also influence, mul-
tiple other design aspects. Examples are; warship survivability, arrangement configur-
ation (layout), and manning. For more examples refer to Pawling et al. (2013, 2014)
who extensively discuss the role and use of style in the preliminary design process.

To summarise, the complexity of a ship, and of ship design, implies that it is diffi-
cult to define a single objective which when followed gives the “best” design solution.
Decisions regarding the choice and trade-offs of relevant objectives are influenced by
many factors (e.g., economical, environmental, political, policies, or simply designer
preference). Therefore, it is highly unlikely that solutions are reproducible at other
times, or with different decision makers. Hence, final design solutions of this complex
“wicked” problem are compared and assessed as “better” or “worse” and not as “op-
timal” or “best” (Rittel and Webber, 1973; Simon, 1973). So, assessing alternatives
in concept exploration at the very least gives the opportunity to compare multiple
options. Thereby, allowing stakeholders to consider solutions deemed most desirable
that were created within the bounds of finite resources.

1.3.3 Relating design and performance space

The variables which can be altered by the naval architect generate a multi-dimensional
design space. Each design variable has a certain limit or range within which it can
vary either in discrete steps (e.g., type of hull shape or number of helicopters) or con-
tinuously (e.g., length, beam, draft). A combination of variables through synthesis,
produces a design with measurable performance attributes (e.g., speed, range, stabil-
ity, etc.) which gives a resulting multi-dimensional performance space. An essential
goal of concept exploration is to determine the useful and feasible limits of these
design and performance spaces as well as the underlying relations between these two
domains which determine these limits.

The design space, however, is not only constricted by the limits of each design
variable. First, not all combinations of variables will produce a technically feasible
design solution. Where technically feasible refers to a design which floats upright
and adheres to other basic laws of physics and principles of naval architecture. This
blocks some combinations of variables from the potential design space. Second, even
when such a technically feasible design solution can be found, additional requirements
on performance can still render a combination of design variables as unwanted. For
example, some solutions may fall outside of the budget while others, although technic-
ally feasible, do not meet specific motion and acceleration criteria. Hence, the design
space is also cut off by performance constraints.

The above relations can be visually illustrated in a simple theoretical example
of a 2D design and performance space (Figure 1.5). Each potential combination of
variables in the design space is mapped through design synthesis to a location in the
performance space. Also, the variable limits and constraints directly influence the
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Figure 1.5: Complex interactions between design and performance space, after
(Devanathan and Ramani, 2010)

shape and size of both the design and performance space.
Understanding the relations between input (design options and variables) and

output (solutions and associated performance) is further complicated by the many
discrete variables used in the preliminary ship design. For example: the number of
engines, type of propulsion plant configuration, the number of decks, or the type of
sensor system, are all discrete choices. Hence, although resistance generally has a
smooth and continuous response as a function of ship main dimensions and speed1,
the selection of a suitable propulsion plant is discrete. Engine sizes, and their com-
binations into a suitable propulsion concept, come at discrete intervals, which in turn
causes discontinuous behaviour in other parts of the design, for example, the sizing
of propulsion rooms or auxiliary machinery rooms (Figure 1.6).

More complicated is the discontinuous response behaviour caused by changes to
the design which result from continuous input variables. For example, Figure 1.7
illustrates the response behaviour of ship displacement as a result of changing the
longitudinal position of the working deck (i.e., note this is a continuous input variable).
In this example, moving the working deck forward, first changes the top-deck layout to
a split superstructure configuration. While moving it further forward will change the
configuration to a forward working deck layout. Hence, though locally the response
of displacement can be considered smooth and continuous, the abrupt changes in
layout cause large and distinct jumps in main dimensions and displacement. The
challenge lies in identifying when these jumps occur, something which cannot easily
be predicted without evaluating many working deck positions.

Also, many calculations in design synthesis are iterative (e.g., space, weight,
volume and power balances). These calculation often rely on an iterative process
to converge towards a technically feasible solution. Hence, when this convergence is

1This is true for a single given hull type, if the hull type is allowed to vary, then the response of
resistance will become non-smooth due to discrete jumps when the hull type changes.
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Figure 1.7: Discrete and continuous response of ship displacement caused by a large
change in top-deck layout due to a continuous change of working deck position

not perfect and consistent for every design concept, a noisy and non-smooth response
behaviour emerges (Buonanno, 2005). For example, computational fluid dynamics
(CFD) calculations at different ship speeds may have different convergence rates,
which creates a non-smooth resistance versus speed curve.

The discrete and noisy nature of input variables and especially the response beha-
viour of outputs as explained above, poses problems for analytical techniques that can
aid designers in understanding the complex behaviour between the design and per-
formance space. For example: fast gradient-based optimisation techniques, response
surface methodology (RSM), and gradient-based sensitivity analysis, all of which rely
on a relatively smooth and continuous model behaviour to work properly and with
benefit. Fitting more complex discrete or discontinuous responses is possible, but
requires specialised techniques which often rely heavily on a-priori knowledge of the
expected response behaviour (see Meckesheimer et al., 2001; Nixon, 2006; Natrella,
2013).
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Several of the earlier mentioned model behaviour issues could be overcome by
using purely numerical geometric design models. These models often use continuous
functions to relate input and output variables (e.g., space and weight) and thereby
size the ship accordingly. Some examples of such models are presented and/or applied
in (Reed, 1976; Hyde and Andrews, 1992; Stepanchick and Brown, 2007; Perra et al.,
2012). Nonetheless, assuming that continuous functions can capture the full nature of
early stage ship design (e.g., especially considering the impact of general arrangements
and architectural issues as explained above) can result in larger model errors and
uncertainty. This may cause sub-optimal overall solutions resulting in designs which,
once the design process evolves, turn out to be infeasible once initial simplifications
are worked out in more detail.

For example, often in these models the general arrangement of the vessel is taken
into account by applying a baseline concept (i.e., from which the numerical space
and weight relations were originally derived). Changes to the general arrangement
naturally influence these derived relations causing the found design to become infeas-
ible, or less optimal, as they no longer have the required available space to fit the
adapted arrangement (e.g., see Purton et al., 2015). The illustrated problems limit
the applicability of numerical geometric models in preliminary ship design as they
have difficulty in covering large changes to general arrangements (Andrews, 2003; van
Oers, 2011b).

In reality, the number of variables and constraints (e.g., requirements or rules and
regulations) far exceeds the simple example of Figure 1.5. This, combined with the
many discrete variables and non-smooth response, limits the ability to easily relate
the design and performance spaces. In summary, both covering and exploring the
limits and relations between the multi-dimensional design and performance spaces is
a difficult task.

1.4 Benefits of concept exploration

The previous section elaborated on the major difficulties associated with large concept
exploration studies. However, if done properly, there are several key benefits of ex-
ploration that can aid designers, project stakeholders, and decision makers (van der
Nat, 1999; Andrews, 2003; van Oers, 2011a):

• First, concept exploration can provide a broad overview of the design and solu-
tion space fitting different balances of customer needs and budget (Section 1.3).
This allows decision makers to quickly filter-out design solutions and associated
requirements that lie out-of-reach (e.g., from a technical, cost, and/or opera-
tional perspective). Or, if these solutions and requirements are really desirable,
it gives naval architects an opportunity to trade-off other options in an informed
dialogue with project stakeholders.

• Second, concept exploration should allow decision makers to shift their effort
towards design aspects that are of real importance and not those (traditionally)
thought of as important. That is, focus must be put on those aspects which,
from exploration, have been identified as important design drivers for the design
project, in terms of technical feasibility, performance, and cost.
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• Third, though difficult in itself, concept exploration has the potential to help
identify the complex interactions and relations between the design space and
resulting solutions and performance space (1.3.3). This insight provides the naval
architect with the necessary understanding as to why and how the combined
design requirements result in a certain solution with associated performance,
again in terms of technical feasibility, performance, and cost.

Ultimately, the above provides the naval architect with a better understanding
of the lay of the design landscape. That is, knowledge of the complex interrelations
between the many design aspects and why and how they together result in the per-
formance and cost of the integrated design. This, in turn, gives decision makers
an informed basis for making trade-offs in the search of a solution which balances
customer ambitions and their budget.

Given the challenges of concept exploration in the preliminary design of complex
ships presented in Section 1.3, three key issues, which currently limit the benefits of
concept exploration, are identified that must be addressed. These are:

1. To successfully cover the extent of the possible design and performance space,
one must generate and explore a broad range of varying design options (Sec-
tion 1.3.1). This implies that, although the number of possible combinations
of these options is extremely large, as many as possible should be considered.
Thus, increasing the chance of finding unexpected solutions and allowing the
naval architect to create a more detailed picture of the interrelations between
the design and performance space (Section 1.3.3). The ability to generate and
explore a larger and broader set of options is therefore relevant to all challenges
of Section 1.3.

2. The ability to identify the complex interrelations between the design variables,
resulting solutions, (required) performance, and their cost, must be improved
(Section 1.3.3). This insight is needed to decide on the balance of design ob-
jectives. This includes decisions regarding which aspects drive performance and
cost, and trade-off decisions for those aspects which conflict. The ability to
identify this type of insight helps the designer tackle the specific issue of defin-
ing the design goals (Section 1.3.2). That is, “what is it we are actually looking
for?”

3. In addition, addressing the above issues provides a direction in which to focus
further concept exploration. That is, once it has been identified “what it is
we are looking for,” further attention can be focused to this specific part of
the design space. Though this does not primarily reduce the number of design
options under consideration, it does allow the designer to shift the exploration
effort from uninteresting options towards the identified as more relevant options.

1.5 Characteristics of conceptual ship design tools

The dynamic and exploratory nature of preliminary ship design and the task of “re-
quirements elucidation” led Andrews (2011) to draw up a set of desirable character-
istics of conceptual ship design tools. Characteristics, which according to Andrews,
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tools should strive to meet if they are to truly aid designers in the early stages of
design. These characteristics are:

• Believable solutions, that is, generated solutions should be technically feasible
and sufficiently descriptive (e.g., they must obey the laws of physics, the basic
principles of naval architecture, and the necessary rules and regulations).
• Coherent solutions, that is, a tool should produce more than a solely numerical

description of performance and cost (e.g., a 3D visual representation of the
solution).
• Open and responsive methods, that is, the opposite of a “black-box” or rigid

decision systems. Tools and methods should respond to those issues that are
deemed important to the stakeholders.
• Revelatory insights, that is, identifying likely design drivers early on to aid the

concept exploration process.
• Creative approach, that is, encouraging radical “out-of-the-box” solutions and

a wide design exploration to push requirement elucidation boundaries.

This list directly relates to the specific challenges and goals of concept exploration
Section 1.3 and 1.4. A diverse set of design options must be integrated into technically
feasible and coherent solutions that are sufficiently descriptive so they provide insight
into the true design objective, while still maintaining a broad perspective. Hence, tools
should aid designers and stakeholders in answering the question: “what is actually
wanted?” These desired tool characteristics are used throughout this dissertation;
both as a means of evaluating current methods from literature, as well as for the
development of the proposed approach.

1.6 Objective and focus of the research

The research presented in this dissertation aims at improving the task of concept
exploration during the preliminary design of complex ships. It does so, by improving
the actual process of concept exploration models. That is, design options must be in-
tegrated into coherent ship designs to evaluate their performance and cost. Assessing
a large number of designs provides insights into the interrelations between the input
(design options) and output (design solutions, performance and cost). Insights which
in turn should be used to steer the exploration process.

Given the challenges, benefits, and improvements to the process of concept ex-
ploration elaborated in the previous sections, the main research question of this dis-
sertation is defined as:

How to generate and select the “right” design(s) using insight gained during concept
exploration?

The specific terms used in the research question are defined as follows:

• The right design(s), refer to the designs that the customer and stakeholders
actually want. That is, designs that have a desirable balance of operational
performance (needs) for a given budget while safeguarding technical feasibility
(e.g., a cost-effective design).
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• Insight, refers to understanding how the design and performance space relate,
that is, how and why the input (e.g., design options, requirements, preferences,
and constraints) and the output (e.g., design solutions, performance, and cost)
interact.

• Generate, refers to applying insight to ensure that the right design is actually
generated during concept exploration (i.e., it actually exists).

• Select, refers to the confirmation, through selection based on the current insights
gained, that indeed the right design exists and that it is found to be desirable.
These selected design(s) can then be used for further, possibly more detailed,
analysis in later stages of the design process.

Though it is considered to be an essential part of any concept exploration effort, this
research does not attempt to develop a new type of ship synthesis model. Rather,
the focus is on how to best use and integrate a ship synthesis model as part of the
concept exploration process during preliminary ship design.

The scope of the research is also further limited by the following choices:

• Focus on naval architecture related performance (e.g., speed, range, and cost).
Operational performance, though it forms an essential role in finding a truly
balanced design solutions (Section 1.1), is not taken into account numerically
(e.g., through the use of operational simulation models). However, the developed
approach should allow such numbers to be included if available.

• The approach is applied, through test-cases, to the design of naval ships. Though
these ships form a particularly challenging and unique preliminary design prob-
lem (Andrews and Dicks, 1997), the design of other complex ships (e.g., yachts,
offshore support vessels, drilling ships, or pipe-laying vessels) should benefit
similarly from the developed approach.

• A functional decomposition of the design problem is assumed to be available
(e.g., see Wolf, 2000; Klein Woud and Stapersma, 2002). Hence, a selection of
viable and interesting design options (e.g., different systems, sub-systems, and
required performance levels) is available which, when integrated, should provide
specified functional capabilities. Naturally, depending on the variability of the
design options chosen, the resulting design’s capability can be at different levels
of performance (e.g., two main guns of a different calibre can cover the same
capability at varying level of performance). Even so, in theory new insights
acquired during concept exploration can uncover the need for new capabilities
and thus design options.

1.7 Layout of the dissertation

This dissertation first explores the nature of complex ships and the preliminary design
of such vessels. The challenges this poses for concept exploration are then analysed
(Chapter 1). Next, a review of current literature on various approaches to concept
exploration of different engineering design fields is made to assess their applicability
in the challenging context of preliminary ship design (Chapter 2).
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The problem analysis and literature review were used as input to develop a the-
oretical work-flow of an interactive and progressive concept exploration approach
(Chapter 3). The key steps of this work-flow were then addressed separately and de-
veloped as proof-of-concepts to assess their individual workings. Next, the individual
proof-of-concepts were further developed and combined into a prototype concept ex-
ploration tool based on the work-flow of Figure 3.2 (Chapters 4, 5, and 6).

The final interactive and evolutionary concept exploration tool is used in two
design test-cases to demonstrate its ability to assist a designer in uncovering essential
preliminary insights that aid in the search of a technically feasible and affordable
design solution (Chapter 7). Finally, conclusions regarding the benefits of the de-
veloped approach to ship design are drawn and several recommendations for future
work are discussed in Chapter 8.



Chapter 2

A review of concept
exploration methodology

“You cannot have everything. If you attempt it, you
will lose everything. On a given tonnage there cannot
be the highest speed, and the heaviest battery, and the
thickest armour, and the longest coal endurance.”

– Alfred Mahan (1911, p. 44)

Chapter 1 focussed on the main challenges and potential benefits of large and thor-
ough concept exploration studies in the preliminary design of complex ships. This
chapter provides a more in-depth and detailed overview of concept exploration meth-
odology. It covers relevant methods from literature which attempt to overcome the
challenges presented in Chapter 1 and thereby improve the concept exploration pro-
cess in ship design and other engineering design fields. Finally, based on the results of
the literature analysis the outline for a novel interactive concept exploration approach
is introduced.

2.1 Sequential versus concurrent

When studying various references, two main approaches to performing concept ex-
ploration can be distinguished. The first is sequential (or point-based) exploration,
and the second is concurrent (or set-based) exploration (e.g., see van der Nat, 1999;
Buonanno, 2005; Stepanchick and Brown, 2007; Pawling, 2007; Strock and Brown,
2008; Singer et al., 2009; Lamerton et al., 2010; van Oers, 2011a). In the exploration
of ship designs, sequential exploration follows the concept of the traditional design
spiral. A single design is manually developed and altered in several iterations until
a suitable balance of desired design properties is achieved (Figure 2.1a). At each
iteration the lessons learned are used to decide on the next actions and decisions to
make. However, the number and diversity of options considered during preliminary
design pose a problem for this method.

17
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Though various numerical approaches and tools have been developed to aid manual
preliminary design1, generating and balancing a single design solution, both technic-
ally and operationally, still requires considerable effort (Pawling, 2007; van Oers,
2011b). Consequently, only one or several combinations of design options can be in-
vestigated at an early stage. This leaves large and potentially high performance areas
of the design space unexplored. In addition, the final result of sequential exploration
relies heavily on the chosen starting point (baseline or parent design) and experi-
ence of the naval architect. Moreover, sequentially making changes to a single parent
design can result in distorted final solutions (van Oers, 2011a). In this case it is often
best to start-over and incorporate lessons learned into a new vastly different solution.
For example, during the preliminary design of the second RNLN landing platform
dock ship, the HNLMS Johan de Witt, lessons learned from several design iterations
were used to start a final new “clean-sheet” design concept, which allowed the design-
ers to step away from decisions restricting the first iterations (Hopman, J.J. personal
communication, December 2, 2015).

In concurrent (or set-based) concept exploration a large number of design solutions
are generated, in parallel, with computerised ship synthesis models. These models
allow naval architects to automatically integrate a large number of different options
into a set of design alternatives (Figure 2.1b). In comparison to sequential exploration,
this large set of designs provides a much broader overview of a the potential solutions
space.
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Figure 2.1: Two main approaches to concept exploration

Nonetheless, as the ship synthesis models used in a concurrent approach must deal
with large numbers of designs, they often have less detail per design in comparison
to tools used for sequential exploration. This lack of detail in the synthesis model is
balanced by the larger number of designs covering more design variations of interest,
thereby still allowing more knowledge to be extracted from the result. In later stages,
a selection of these low-detail designs can be worked out in more detail to verify

1Examples are the Building Block Approach implemented in SURFCON (Andrews, 1984; Andrews
and Dicks, 1997; Pawling, 2007) or GCD2 (Takken, 2008)
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whether their performance still holds.
Concurrent exploration has many additional benefits. First, a large set of designs

covering a broader area of the design and performance space allows a designer to
analyse trade-offs. For example, within a set of designs it is possible to study multiple
solutions which have similar cost yet varying performance, or vice-versa (van Oers,
2011a; Zandstra et al., 2015). Second, unattainable performance and cost can be
identified by exploring the extent of the design and performance space. This can
indicate whether current design options are even able to meet the required need and
budget, which in turn may aid in identifying possible improvements or other, un-
thought-of, options.

Numerous ship design studies have shown the potential benefits of a concurrent
or set-based approach for early concept exploration. For example, Strock and Brown
(2008) use the Advanced Ship and Submarine Evaluation Tool (ASSET) and a Sim-
plified Ship Synthesis Model (SSSM) to study a broad range of propulsion plant
concepts for a surface combatant. Wagner et al. (2010a) apply a packing-based ship
synthesis model to explore the conceptual design of a deep-water drillship. McK-
enney et al. (2011) use a set-based design approach to explore design options for a
mine-countermeasures vessel.

To summarise, advances in computational power and ship synthesis models have
shifted concept exploration methods from point-based approaches, where only few
design solutions can be generated and explored, to more automated concurrent ap-
proaches, where many solutions can be generated and assessed simultaneously. This
allows designers to explore a greater set of varying design options covering a larger
area of the potential design and performance space. Thus, aiding the search for a
balanced solution which best matches customer needs within a given budget.

The subsequent sections of this chapter cover concurrent concept exploration
method in more detail. Various approaches to concurrent concept exploration from
current literature are discussed to assess their benefits and applicability to the chal-
lenging field of preliminary ship design. In particular, the presented approaches are
assessed based on the challenges covered in Chapter 1.

Generally, a concurrent exploration approach encompasses the following steps:

1. Generate a set of concept solutions covering varying design options to populate
the design and performance space.

2. Explore and analyse the set of generated concept designs to identify which
combinations of design options result, when integrated, in good “performers”
(i.e., gaining problem insight).

3. Select those solutions and their accompanying design options that suit the need
(e.g., for further, more detailed, analysis).

4. The integration of the above steps into an exploration process.

An initial step is missing from the list above, that is, preparing the necessary pre-
requisites to perform an exploration study. It is not listed here as it depends highly
on the specific problem context (see Chapter 3 for a discussion). For example, this
step may involve the gathering of data and the choice and development of a synthesis
model (i.e., which integrates variations of design options and variables into a design
solution with associated performances).

The mentioned steps can be achieved in various ways: manually, by making
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use of designer interaction; automatically, by using computer algorithms; or semi-
automatically, by mixing computer algorithms with designer interaction. The fol-
lowing sections elaborate each step in more detail and discuss current methods and
techniques available.

2.2 Populating the design space

The first step, generating a set of concept solutions, can be performed manually. For
example, a designer can repeatedly use a manual synthesis tool to generate multiple
concepts for different sets of design options (e.g., see Pawling, 2007). However, because
of their ability to generate a much larger set of designs in a short time-frame, this
section only presents (semi) automated ship synthesis models.

2.2.1 A combinatorial problem

The first problem, is to consider which design options (variables) should be combined
and synthesised. That is, to assess if they produce feasible design solutions. Ideally,
it would be best to try all possible combinations of design options covering the full
design space. This approach is commonly referred to as a brute-force, exhaustive or
full factorial search. However, for many complex engineering design problems these
approaches are impractical. The dimensionality of these problems is extremely large
and in theory can be considered as infinite due to the many continuous variables.
Thus, even with a short evaluation time of a single combination of options, the time
required to analyse all combinations of options is extremely long.

Nonetheless, the dimensionality issues of continuous variables could be solved by
using variables with a fixed range at discrete intervals (e.g., vary length from 50−100m
in steps of 2m). Still, even with discrete interval steps, the problem dimensionality
issues remain. Consider a problem with n variables which each have m different
values. In this case the number of possible combinations is:

O(mn) (2.1)

Hence, for a problem with 20 variables, each varied over 10 values, this amounts to
1020 possible solution combinations. Even with an evaluation time of 1 second, this
would still mean well over 13.7 billion years of computing time. Clearly, this makes
brute-force approaches unsuitable for complex high dimensional engineering design
problems.

2.2.2 Systematic sampling

Simply attempting to generate all combinations of design options is not practical.
A possible solution is to systematically generate designs for only a limited number
of combinations of options such that they “best” cover the design and performance
space. The goal is to maximise the amount of information that can be obtained for a
limited number of generated designs. Figuring out which combinations of options to
run is called a design of experiments or DOE. For example, refer to Natrella (2013)
for an introduction to design of experiments for engineering applications.
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There are, however, some limitations to the application of design of experiments
to complex engineering design problems. First, there is no guarantee that a combin-
ation of design options found using a DOE will produce a feasible solution. This is
something which is particularly valid for the design of complex ships due to the delic-
ate technical balances of weight, space, and power. Nonetheless, sequential sampling
methods are available which are able to account for infeasible regions within the design
space (see Nixon, 2006).

Second, the number of variables and their individual variations, depending on the
synthesis model used, can still be extremely large. Early stage architectural ship
synthesis models such as the packing-based model by van Oers (2011b), or space
allocation based model by Nick (2008), use large numbers of continuous and dis-
crete variables as well as constraints to define the variations of general arrangement.
Moreover, the number of variations of variables regarding the general arrangement
(architecture) of the vessel cannot easily be reduced. For example, the longitudinal
position of a space or system may have a resolution step of 1m. Increasing this step
to limit the number of variations (e.g., towards 5m) can result in a large change in
the models’ behaviour (see Section 1.3.3). This problem limits the application of a
DOE approach in combination with early stage architectural synthesis models.

Even so, systematic sampling using design of experiments is still a powerful tool.
Especially when coupled with regression-based methods (e.g., response surface meth-
odology) to create surrogate-models which represent the design and performance space
(see Stepanchick and Brown, 2007). These surrogate models, which are relativity
simple mathematical formulations, can then be interrogated at a far lesser computa-
tional cost compared to the original synthesis model. This allows many more design
points to be sampled in the design and performance space. Khuri and Mukhopadhyay
(2010) provide a historical overview of the field of response surface methodology over
the last decades.

2.2.3 Search algorithms

Another approach to sampling the possible design space is to apply a search al-
gorithm2. The idea of this approach is to actively seek combinations of design options
giving a desired effect. This effect is represented in the form of an objective function.
The selection of which design options to combine is left to the search algorithm that
attempts to minimise (or maximise) the objective function.

Search algorithms are based on a variety of concepts. The two main concepts which
are widely used within engineering design are: (i) gradient-based, or (ii) heuristic-
based algorithms. To work properly, gradient-based algorithms require a continuous,
smooth, and differentiable objective function. Gradient information is then used to
determine the next step in the process, that is, a new combinations of design options to
try. Heuristic approaches do not guarantee an “optimal” solution, yet for problems for
which no efficient algorithms are mathematically possible, they can provide relatively
good answers in a reasonable time-frame. There is, however, no guarantee that the
final answer is the “best” solution.

2Search algorithms are more often referred to as optimisation algorithms, however, because
concept exploration does not deal with optimising a single design, the term search algorithm is
used in this dissertation.
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Gradient-based approaches have been successfully applied in various areas of ship
design. Examples are: the optimisation of hull forms for hydrodynamic performance
(Percival et al., 2001), or the optimisation of ship structures (Rigo, 2001). Some
examples applying heuristic based methods are (e.g., Nick, 2008; Wagner et al., 2010a;
van Bruinessen, 2010; van Oers, 2011b).

A key challenge when applying search algorithms, besides determining which type
of algorithm to use, is how to define the objective function. That is, what is it the
algorithm should actually be searching for, what are the main objectives? Unfortu-
nately, defining what the main objectives are, is actually one of the goals of preliminary
design and concept exploration (Section 1.3). Thus, setting up such algorithms for
use in concurrent concept exploration is not a straightforward task.

Nonetheless, the initial design requirements, constraints, and designer/customer
preferences can provide a starting point for determining the objectives of a search
algorithm. Methods for combining and applying these multiple, often conflicting,
types of information to search algorithms are threefold (Horn, 1996; Collette and
Siarry, 2003; Kumar and Bauer, 2009): (i) a-priori, (ii) a-posteriori, (iii) progressively
or gradually. Each method warrants some additional elaboration as they may provide
the basis for a concept exploration approach.

A-priori methods

A-priori methods attempt to combine multiple design objectives into a single overall
objective function, which can then be used by a search algorithm to search for the
single “best” solution (Figure 2.2).

Define the objective

Run search algorithm

The “best” solution

Figure 2.2: The basic process of an a-priori search approach

As the term suggests, they rely on a-priori information about which objectives to
combine and at what relative importance. For example, a-priori methods often use a
system of weightings to represent the relative importance of each individual objective
to the overall problem. One commonly used example is the weighted sum method,
which is defined as follows:

F (x) =

n∑
i=1

wifi(x) (2.2)

where wi is the weight factor which represents the relative contribution of objective
fi to the overall aggregated objective F (x).

Multi-criteria decision making techniques are often used to define the individual
weightings of each objective based on stake-holder preferences (e.g., the analytical
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hierarchy process developed by Saaty, 1988). Still, the difficulties of determining a-
priori which objectives should be used and combined (and at what level) remain.

A-posteriori methods

While a-priori methods attempt to combine multiple design objectives, a-posteriori
methods leave them separated. Instead, they attempt to find a set of non-dominated
solutions, which represent a Pareto-front from which the decision makers can then
choose the preferred solution (Figure 2.3 and 2.4). Hence, there is no need for a-priori
information about the relative importance, or weighting, of the individual objectives.
Even so, it is still necessary to define which objectives are to be used.

Define the objectives

Run search algorithm

Explore Pareto-front

Select “best” solution

Figure 2.3: The basic process of an a-posteriori search approach
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Figure 2.4: Concept of (non-)dominated solutions and the Pareto-front

A simple a-posteriori technique is to apply the a-priori methods (e.g., the weighted
sum method) but systematically vary the individual weightings used in several runs.
In this way it is possible to obtain a set of non-dominated solutions representing a
Pareto-front. However, as illustrated by Das and Dennis (1997), it can be mathem-
atically proven that this method will never find a well distributed Pareto-front in
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non-convex situations. For example, it would not find and populate the middle of the
Pareto-front in Figure 2.4 as this is a convex region.

Popular a-posteriori approaches apply multi-objective genetic algorithms. The
basic principle of a genetic algorithm applies a process inspired by natural evolution
and survival-of-the-fittest to gradually evolve and improve a set of solutions (Fig-
ure 2.5). Solutions with a better “fitness” rating are more likely to survive within the
algorithm, thus making it more likely for them to pass-on their favourable properties
to offspring. Since these algorithms work with sets of solutions, rather than trying to
alter one solution, makes them well suited for a-posteriori approaches.

Initial population

Evaluate fitness

Termination
criteria met?

Selection

Crossover

Mutation

Final population

no

yes

Figure 2.5: Scheme of a simple genetic search algorithm

Two prime examples of multi-objective genetic algorithms are the Non-dominated
Sorting Genetic Algorithm II (NSGA-II, Deb et al., 2002), and the Strength Pareto
Evolutionary Algorithm 2 (SPEA2, Zitzler and Lothar, 1998). Both apply the concept
of non-dominated solutions in an attempt to search for a well defined Pareto-front for
a multi-objective problem.

Though a-posteriori methods do not require information regarding the relevant
importance of objectives, they still require the user to a-priori define which objectives
are to be used. Simply attempting a large number of objectives is impracticable and,
as various studies have shown, even hampers with the performance of the algorithm
to a point where it becomes comparable to random search methods (e.g., Deb, 2001;
Köppen and Yoshida, 2007). This requires the user to apply engineering judgement
when selecting which objectives to include in the search criteria, and in case new
information or insight emerges, to re-run the algorithm to include this.



A REVIEW OF CONCEPT EXPLORATION METHODOLOGY 25

Progressive (evolutionary) methods

Progressive methods combine principles from both a-priori and a-posteriori methods.
Collette and Siarry (2003) refer to this method as, “...having a dialogue with the
optimisation method so that we can make our preferences precise.” Where the term
preferences can refer to the type and relative importance of the objective functions,
constraints, variable bounds, or even a combination of the those three.

Essentially, a progressive method makes use of insight which the user or decision
maker has gained during the search algorithm’s progress. Thus, it is possible to steer
or guide the search process based on new information gained, by interacting with the
search algorithm itself (Figure 2.6). In essence, manual sequential concept exploration
is also a progressive method. But, instead of using a search algorithms, the designer
decides on the next step in the search process, and then applies this step to a single
design. In the progressive case, however, such a decision is used to generate multiple
new designs.

Initial preferences

Run search algorithm

Explore results

Adjust
and/or expand

preferences?

Select “best” solutions

no

yes

Figure 2.6: The basic process of a progressive search approach

Progressive methods can make use of elements from both a-priori and a-posteriori
approaches. For example, the weighted sum method may be used with gradually and
interactively adjusted individual weightings of the objective functions. Alternatively,
a-posteriori methods may be applied in which the number and/or definition of the
multiple objectives are gradually and interactively expanded and/or adjusted.

When combined with evolutionary algorithms, progressive approaches become
very flexible search tools which allow subjective user input, preferences, and engineer-
ing judgement to be included in the search process. This has opened up an entire field
of optimisation methods referred to as interactive evolutionary computation (IEC).
When genetic algorithms are used, progressive approaches are often referred to as
interactive genetic algorithms (IGA).

Because progressive methods allow human interaction based on insights gained
during the design exploration process, this has led to many applications in design
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(Kim and Cho, 2000; Buonanno, 2005; Kim et al., 2006; Kumar and Bauer, 2009;
Rafiq et al., 2006; Cluzel et al., 2012). Many applications benefit from the guidance
provided through progressively adding engineering judgement and newly discovered
insights in the concept exploration and search process. Some notable examples are:

• Buonanno (2005) uses a type of IGA to perform a concept exploration study
for the design of a supersonic jet, using a combination of human evaluation
and numerical optimisation to assess the “acceptance level” (e.g., an assess-
ment of producibility based on engineering judgement) and performance of the
found designs. This allowed him to ensure technical feasibility without over-
constraining the problem.

• DeNucci et al. (2009) and DeNucci (2012) use a type of IGA to produce strange
and “out-of-the-box” concept designs for a US Coast Guard cutter in an attempt
to trigger naval architects to express implicit design rationales for the general
arrangement of systems and spaces. He then uses the captured design rationale
to force the underlying ship synthesis model to generate designs which are more
likely to trigger the naval architect. He also showed that the captured rationales
can be used within a search algorithm to actively search for general arrangement
which include these design rationales.

• Singer et al. (2009) use a different approach, which they also call set-based
design, to gradually evolve and balance requirements, constraints, and prefer-
ences, of the design. In this case “set-based” refers to sets which represent
different aspects of the design (e.g., propulsion, hull form and hydrodynamics,
or general arrangement). The approach, which finds its origin in the automot-
ive and aerospace industry, intends to keep options for these individual aspects
of the design open for as-long-as possible, thus allowing quick adaptation to
changing requirements or new design insight. It also allows different design
disciplines to work together to create a common set of designs by regularly re-
viewing and agreeing upon updating the variable bounds and requirements of
their individual respective sub-sets.

Progressive methods are also shown to be advantageous in cases where the creative
aspect of design is very relevant, an element which Andrews (2007, 2012) argues is key
in the (preliminary) design of complex ships (e.g., Kim and Cho, 2000; Cho, 2002;
Buonanno, 2005; Cluzel et al., 2012). Nonetheless, their current applications to ship
design is limited. For example, DeNucci (2012) applied a progressive approach but
primarily uses it to focus the extraction of general arrangement rationales. Further
applications in other (engineering) design fields lack many properties which are relev-
ant for ship design. For example, the human evaluation and interaction is limited to
only one or two aspects of the problem such as, general appearance (Kim and Cho,
2000; Cluzel et al., 2012), or feasibility and “acceptance level” (Buonanno, 2005).
Moreover, these aspects where determined as being important a-priori to creating
the approaches, which means the adopted approaches could be specifically tailored to
match that kind of preference information. Considering the challenges of Section 1.3,
this is unwanted in an environment of ever changing goals.

To summarise, a progressive search process has a broad initial starting point after
which, through human evaluation and feedback, subsequently more refined steps lead
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the exploration effort towards those solutions which are deemed as relevant and best
(Figure 2.7). Hence, they are in-line with the specific challenges of concept exploration
in the preliminary design of ships mentioned in Section 1.3. Nonetheless, the success
of a progressive approach relies heavily on the ability of a user to first gain, and then
re-apply, insight and problem knowledge through adjusted and/or expanded prefer-
ences about the number, definition, and relative importance of the search objectives.
Considering the nature of preliminary ship design and ship concept exploration as
elaborated in Section 1.3, this is a difficult, yet novel, process.

(a) Initial global search (b) Refined global search (c) Local search

Figure 2.7: Graphical representation of a type of progressive search process

2.3 Exploring and evaluating the results

After designs have been generated, the next step in a generic concept exploration
approach is to analyse the results. That is, exploration of the generated design and
solution space to gain insight into the design problem. For example, insights into inter-
relations between design variables or characteristics, identifying trends and clusters,
and identifying the extent of achievable performance. These insights, in turn, provide
the necessary understanding required to make decisions regarding the true design ob-
jectives and their relative importance. The task of this type of result data analysis is
also known as exploratory data analysis or data mining.

2.3.1 Data visualisation

Data visualisation techniques play an important role in this exploration step. Again,
the dimensionality of the ship design problem, coupled with the large number of con-
tinuous and discrete variables, makes visualising and interpreting concept exploration
results a challenging and demanding task. Several multi-variate data visualisation
methods, such as, scatter plot matrices (e.g., Carr et al., 1987), parallel coördinate
plots (e.g., Inselberg, 1985), s-Pareto fronts (Mattson and Messac, 2003), have been
developed to aid humans in performing this task.

Moreover, when coupled with user interaction, such as, interactive data brushing,
or interactive user selection, multi-variate data visualisation is regarded as a powerful
tool that aids in uncovering useful insights (Stump et al., 2004; van Oers et al., 2008;
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Gaspar et al., 2014). For example, see Figure 2.8 for a parallel coordinate plot with
data brushing.
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Figure 2.8: Parallel coördinate plot with data brushing (∇ ≤ 1300m3)

There are several notable examples of interactive data visualisation and explora-
tion in current literature. For example, Stump et al. (2004, 2009) use different types
of interactive visualisation techniques, such as, data brushing and filtering, to extract
insights that aid decision-making within a generic interactive data exploration tool-set
they call the Trade Space Visualiser (TSV).

Cluzel et al. (2012) take a different approach and rather than displaying numerical
data use visualisation of the artefact itself to have people interactivity evaluate the
preference for a particular car shape (Figure 2.9), for example, how sporty it looks?
This method is particularly suitable for assessing subjective measures of the design
artefact as a whole, for example, aesthetics, overall form, or even “sportiness”. An-
other example of such an approach is presented by Kim and Cho (2000); Kim et al.
(2006) who use a similar technique in fashion design.

Figure 2.9: Interactively exploring and evaluating a set of car silhouettes (Cluzel
et al., 2012)



A REVIEW OF CONCEPT EXPLORATION METHODOLOGY 29

Nonetheless, when the to-be-rated artefact becomes more complex or contains
more information (e.g., as it the case with the general arrangement of a ship, or
even a part of the ship) simply presenting the arrangement and asking designer to
evaluate it with a score of 0-10 is impractical. Hence, van Oers et al. (2008); van Oers
(2011b) apply a different interactive and layered visualisation technique to exploring
ship general arrangement designs. 2D scatter plots with user manipulation are used
to sequentially down-select and filter ship designs with specific general arrangement
aspects from a larger set (Figure 2.10).

Figure 2.10: Interactively down-selecting a ship general arrangement through pre-
ferred system positions (van Oers, 2011b)

2.3.2 Gaining insight

As argued in Section 1.3.3 a key objective of concept exploration is gaining an under-
standing of the complex relations between the design and performance space. Inter-
active data visualisation techniques, such as those introduced in the previous section,
play an important role in this task. Insight is only gained when actually exploring,
working with, or even “playing” with data, that is, it is not formed by it self and
must be extracted and made explicit by a human (DeNucci, 2012).

Insights which are of particular importance and interest during early stage design
are related to the interactions between the design requirements (e.g., what the cus-
tomer wants performance wise) and between requirements and the resulting design
solutions (e.g., what the customer can afford). As such, the following information
is deemed essential in elucidating insights into these interactions (Duchateau et al.,
2013, 2015; Pawling et al., 2013, 2014):

• Linking requirements (functional, operational, regulatory, or even designer pref-
erences) to solutions, and vice-versa. That is, given a set of requirements what
potential solutions will fit these, or given a specified solution what performance
may be expected (and thus what requirements met). In addition, understanding
the links and relations between requirements and solutions allows the designer
to identify possible design drivers (e.g., linkages which may drive the cost, per-
formance, or feasibility of solutions).

• Identify if and when requirements/criteria conflict. This provides feedback on
the existence of trade-offs between requirements.
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• Identify how these conflicts and trade-offs might be resolved or avoided. De-
cisions must be made on which requirements to change, and by how much in
order to maintain a technically feasible, operationally effective, and affordable
solution.

• Identify why a conflict exists, that is, to understand the underlying mechanisms
causing the conflict so it may be avoided in the future.

Collectively, the above insights should aid the designer in understanding and elucid-
ating the initial design requirements, thereby forming an informed understanding of
the design problem at hand (e.g., perform “requirements elucidation” Andrews, 2003;
Andrews et al., 2012). Hence, there is sufficient cause for improving the exploration
of designs and accompanied data produced during concept exploration.

2.4 Selecting desirable design solutions

The final step in a generic concept exploration process is the task of selecting prom-
ising solutions. This step closely ties in with the first step (populating the design
space) and the second step (exploring the design space). When, for example, search
algorithms are used to populate the design space, then already the algorithm needs
some indication of what a “desired” design solutions should look like (i.e., an object-
ive). That same objective could then of course also be used to identify the “best”
design from the final set. However, it was already extensively discussed that, in most
cases, this objective cannot easily be defined (Section 1.3.2). Actually, it is the pro-
cess of concept exploration itself which should aid a designer and provide insight into
“what it is we are looking for?”

A possible solution to the above issue was presented, that is, instead of combin-
ing objectives, leave them separated. Then, a set of designs is sought in an attempt
to maximise a set of objectives. Nonetheless, even if such a set is found, then the
often conflicting objectives will cause a non-dominated Pareto-front of design solu-
tions. From this non-dominated set, a user must then still select a suitable trade-off
between the conflicting objectives (van Oers et al., 2008). Moreover, when additional
information is added to the selection, e.g., in the form of a constraint or an additional
objective, the original front will likely change shape or shift (i.e., as the original set
will be further reduced by the constraint or different designs become non-dominated
with respect to the new objective).

More recently, the use of “dashboards” has been presented (e.g., Perra et al.,
2012). These decision support tools allow the user to interactively manipulate a se-
lection of design characteristics and required performance measures in search of a
balanced design. They often rely on fast underlying meta-models which represent
the often complex and slow simulation and synthesis models used to estimate oper-
ational performance and effectiveness. Information from these meta-models is then
linked using a value system combining measures of performance (MOP), measures of
effectiveness (MOE) and design performance characteristics such as speed and range
(e.g., Strock and Brown, 2008). The dashboard then allows decision makers to vary
the required MOPs and MOEs while keeping track of required design characteristics,
or vice-versa.
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However, as discussed in Section 1.3.3, meta-models do not always capture the
true response of synthesis or simulation models. An identified solution may therefore
become infeasible once it is re-evaluated using the actual models used. In addition,
the use of meta-models makes the underlying workings of the dashboard a “black box”
for the user. The direct link between input and output is broken by the regression
techniques used, limiting the ability of investigating the why of identified relations
or balances (i.e., refer to Andrews’ list of desired characteristics of preliminary ship
design tools in Section 1.5).

Progressive methods (Section 2.2.3) again seem a promising approach in the se-
lection of a balanced set of options. They allow a designer to re-use and add gained
insights to gradually define and alter selection criteria during the process. This is
important because it gives the designer a gradually built-up picture of how a certain
solution has become preferable through decisions made. This increases the sense of
acceptance for the end result, which both van Oers (2011b) and Andrews (2011) dis-
cuss as an important aspect lacking in many automated methods. This does, however,
require that some form of “decision trail” needs to be recorded which captures the
selection process (DeNucci, 2012).

2.5 Exploration process and integration

Finally, the last step integrates the first three steps into an exploration process. These
are:

1. Populating the design space (i.e., generating a set of solutions).
2. Exploring and evaluating solutions to gain insight into the design problem.
3. Selecting desirable (“best”) design solutions.

Depending on the approach adopted for each step, they can be combined and in-
tegrated in various ways. From studying the referenced literature in the previous
sections, two different adopted exploration processes can be identified.

The first is a sequential execution of the three steps mentioned above with limited
to no integrated feedback of lessons learned. This approach is applied when the gener-
ation of solutions is based on a-priori or a-posteriori methods (Section 2.2.3 and 2.2.3).
The second is an iterative and progressive approach which allows integrated feedback
to occur between the steps, this approach is applied when adapting progressive meth-
ods to generate solutions (Section 2.2.3). Both are described in more detail below.

2.5.1 Sequential integration

Sequential integration of the exploration steps is characterised by a lack of integral
feedback of lessons learned and insight gained. Any information and insight gained
during the exploration can be re-used, yet this requires a new execution of the search
process, with a re-defined description of the search (optimisation) problem used, to
populate the design space. That is, in case of an a-priori and a-posteriori approach
the objective(s), constraints, and variable bounds are altered, and the entire process
of Figure 2.2 and 2.3 must be repeated.

For example, consider the a-posteriori based exploration efforts using the Packing-
approach by van Oers (2011b); Wagner et al. (2010b) and Zandstra et al. (2015). In
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these studies, any gained insight into how to continue or alter the exploration effort
resulted in the need to manually change the inputs, objectives, constraints, or even
the design model itself, before re-generate a new set of design solutions hopefully more
fitting the preferences of the user. Hence, although their adopted exploration process
contained all three steps of this chapter, the exploration effort remained somewhat
cumbersome because of the way these were integrated. This may unintentionally limit
the extent in which the design space could be explored.

2.5.2 Iterative and progressive integration

An iterative and progressive integration of the three exploration steps follows the
basic process as shown in Figure 2.6. First, based on initial preferences a set of
design solutions is generated. Next, through exploration of these solutions the user
may decide to adjust the original preferences, in which case these new preferences are
used to generate new more desirable solutions. Hence, allowing the user to guide the
exploration process based on integral feedback of insight gained and lessons learned.

Since the integration of the three steps (i.e., generation, exploration, and selec-
tion) are already an integral part of progressive search methods, the references of
Section 2.2.3 have already shown how such integration with integral feedback of pref-
erences benefits design exploration. However, they are quickly summarised here to
illustrate which information was used as feedback to guide the exploration.

• Buonanno (2005) applies user feedback of preferences regarding the producibility
of aircraft to steer design generation.
• DeNucci (2012) applies user feedback on rationales in ship general arrangements

to promote the user exploration of arrangement options.
• Cluzel et al. (2012) apply user feedback of preferences regarding the general

appearance and “sportiness” of car silhouettes to generate new solutions.
• Kim and Cho (2000) apply user feedback on the general appearance of fashion

items to identify interesting combination of fashion items.

In summary, these references all use a progressive integration of the three basic steps
of any exploration effort to allow integral feedback of new insight and information
regarding the preferences defining the exploration’s focus.

2.6 Summary

Section 1.4 listed several beneficial aspects of thorough concept exploration studies. In
addition, three main problems were elaborated that must be overcome to fully benefit
from concept exploration in the search of technically feasible and cost-effective solu-
tions in the preliminary design of ships (Section 1.4). These are briefly summarised
here again:

1. The ability to explore a large and diverse set of design options. Options which
are combined and integrated into technically feasible (basic naval architecture)
and believable solutions through design synthesis.
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2. The ability to identify the complex interrelations between design variables, res-
ulting solutions, their (required) performance, and cost. Insight which aids when
deciding on what a good balance between those design aspects should be.

3. The ability to (re)use gained insight to focus concept exploration effort on
those design options and integrated solutions which are deemed of real interest,
without the need to physically limit the number of options under consideration.

Both in the introduction and literature review, several relevant research efforts and
methods have been discussed which attempt to resolve the above problems.

Much effort has been spent on advanced ship synthesis models which provide the
ability to concurrently generate many solutions for the number and diversity of design
options mentioned in Section 1.3.1 (e.g., Nick, 2008; van Oers, 2011b). As such, the
first problem mentioned above has been partially solved. Nonetheless, the actual pro-
cess of how such tools should be used in concept exploration warrants more attention.
Especially considering the research question presented in Section 1.6: “How to gener-
ate and select the ‘right’ designs based on insight gained during concept exploration?”
Solely generating a large number of possible solutions is clearly insufficient. Efficiently
exploring those solutions in search of answer to the other problems presented above
is considered to be equally important.

Within a generic concept exploration process four key steps were identified: (i)
populating the design space, (ii) exploring and evaluating the results, (iii) selecting
a balanced set of options, and (iv) the integration of the first steps into a explora-
tion process. Much research effort has gone into these steps, as can be seen by the
multitude of references covered in this Chapter. Yet, only progressive evolutionary
methods truly combine the first three steps into one integrated exploration process
where the benefits of human evaluation and decision making is married with the power
of evolutionary search algorithms (step iv).

Nonetheless, as elaborated in Section 2.2.3 their applications to (preliminary) ship
design are limited. The overall process of how such method is to be used in preliminary
ship design warrants further attention. In addition, the underlying mechanisms of
progressive approaches (e.g., visualisation of information, gaining insights, feedback
of preferences) require further improvements and developments in order for them to be
applied during preliminary ship design. Hence, a new type of interactive evolutionary
exploration approach, better fitting the nature of preliminary ship design and ship
concept exploration, is required and must be developed.





Chapter 3

Interactive evolutionary
concept exploration

“Design is an iterative process. The necessary number
of iterations is one more than the number you have
currently done. This is true at any point in time.”

– David L. Akin

Chapter 1 has elaborated the importance, need, and challenges of thorough concept
exploration in the preliminary design of complex ships in light of early “requirements
elucidation” (Andrews, 2012). Chapter 2 reviewed several methods used for concept
exploration in various (engineering) design fields. It concluded with the need for a
new interactive and evolutionary (progressive) approach to early concept explora-
tion in ship design as an answer to the challenges and questions presented both in
Chapter 1 and 2.

This chapter outlines the process of the proposed interactive evolutionary ap-
proach. First, the key steps and elements of a generic approach are discussed. Then,
each step is covered in more detail to assess the issues encountered when applying it
to preliminary ship concept exploration. Next, the overall process, which has been
adapted to the context of preliminary ship design, is presented. Chapter 4-6 then
further develop and test the most important steps of the proposed approach. Finally,
the full integrated approach is demonstrated using several test-cases in Chapter 7.

3.1 A generic interactive evolutionary approach

Figure 3.1 shows the generic process of an interactive progressive (evolutionary)
concept exploration approach as proposed by Horn (1996) and by Kumar and Bauer
(2009). This process comprises several steps:

0. Collect and define the problem inputs. Though this step is not mentioned
by Horn (1996) and Kumar and Bauer (2009), input is required to start a
progressive process. Depending on the problem under investigation, collecting

35
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and defining this input is a considerable investment of time and resources. For
example, defining a model suitable for use in the process (e.g., one that takes
initial inputs and preferences, and produces results that can be assessed by the
user) is not straightforward (see Chapter 4 and Appendix A).

1. First, the user describes a set of preferences which define the problem goal, that
is, “what are we looking for?” Initially this set may be limited and based purely
on past experiences. It can even be empty if no initial preferences are defined
or known, in which case randomly generated solutions can provide a starting
point.

2. Second, these initial preferences and criteria are used within a search algorithm
to identify and generate an initial set of possible solutions. This is usually
achieved by evaluating some form of (computer) model based on the initial
inputs and preferences.

3. Third, the results of the search algorithm are explored by the user to evaluate
if and how they meet the initially perceived preferences.

4. Fourth, the exploration step will most likely provide new knowledge and insights
on the basis of which the initial set of preferences and criteria can be adjusted
(i.e., re-evaluate our initial criteria). This new set is then re-used in the search
algorithm to produce a new set of solutions matching the new problem goals.

5. If the resulting solution(s) are satisfactory, the iterative process can be stopped.
Then the final desired solution(s) may be selected based on the progressively
adjusted criteria and preferences and by applying the gained problem knowledge
and insight.

The described steps are very much similar to a generic design (exploration) process
in which there is a constant iterative process of generate → analyse → evaluate →
decide (e.g., see Erikstad, 1999). Nonetheless, a key difference is that a computational
search algorithm, with coupled synthesis model, takes over the generate step. This
has several benefits:

1. The use of an automated design synthesis model allows the generation of many
more design alternatives by reducing the effort traditionally required to manu-
ally create concept designs (van Oers, 2011b). Hence, more variations of design
options may be assessed opening up a larger part of the potential design and
performance space (see Section 1.3).

2. By reducing the effort required to produce concepts, the designer may focus
more on the other design steps: analyse, evaluate, and decide, thereby increasing
the potential of uncovering insights that aid in understanding the true design
problem. This knowledge is essential for making informed trade-off decisions in
search of a balanced design solution (see Section 1.3).

To take advantage of these benefits we must first address any issues encountered
when applying an interactive progressive concept exploration approach to preliminary
ship design. Hence, a more detailed explanation of each step of the generic process
including the applicability to ship concept exploration is further elaborated in the
remainder of this chapter.
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(1) Define
initial preferences

(0) Define
inputs

(2) Run search
algorithm

(3) Explore and
analyse results

(4) Adjust
preferences?

(5) Select
desired solutions

no

yes

Figure 3.1: The process of a generic interactive and progressive (evolutionary) search
approach

3.2 Define exploration inputs

This step was not specifically mentioned in Section 2.1, however, before any explora-
tion can take place, several elements are required as input. These include:

• Design variations. That is, variations which follow from design options under
consideration. What is being varied follows the exploration problem itself. For
example, in the case of Cluzel et al. (2012), who explore different car silhouettes,
the variations represent changes to the silhouette shape. While for Buonanno
(2005), the variations represent different sizes and types of aeroplane config-
uration options (including wing shapes, fuselage shapes, wing configurations,
and engine number and configurations). Section 1.3.1 already discussed design
variations in the context of preliminary ship design which often follow from
a functional decomposition based on the needs of the customer (e.g., refer to
Strock and Brown, 2008; van Oers, 2011b; Zandstra et al., 2015).

• Synthesis model. That is, a model which can integrate design variations into a
technically feasible solution with associated performances. Again, depending on
the exploration problem the synthesis model can be simple or very complex. For
example, in the case of (Kim and Cho, 2000; Cluzel et al., 2012) the synthesis
models are, due to the nature of the design problems, quite simple. While in
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the case of (Buonanno, 2005; Strock and Brown, 2008; van Oers, 2011b) the
complexity of the engineering design problems, coupled with the large degree of
variations, already requires a complex synthesis model and performance meas-
uring tools.

Clearly, depending on the exploration problem, defining and setting up the pre-
requisites for a concept exploration effort, are not trivial tasks. They can require
considerable time and resources. For instance, the exploration effort for a mine-
countermeasures vessel performed by Zandstra et al. (2015) took more than a year
to set-up. Where, most time and resources was spent on defining relevant design
variations and creating the design model to be used in the Packing-approach of van
Oers (2011b).

3.3 (Initial) preferences

In the generic approach the term preferences relates to the expression of the problem
goals and their interrelations, that is, the specific objectives and their relative im-
portance. Preferences also represent trade-offs that are defined for conflicting goals.
Several references (Kim and Cho, 2000; Buonanno, 2005; Cluzel et al., 2012) apply
this concept and make use of user interaction to evolve preferences that are entirely
of a subjective nature (e.g., aesthetics or trendiness) or which rely heavily on human
(engineering) judgement (e.g., producibility).

In the context of preliminary ship design the generic characterisation of prefer-
ences is, however, insufficient. Consider the generic description of the (ship) design
activity, that is, iteratively generate, analyse, evaluate, and decide. In this iterative
cycle far more than solely the design goals and their relative importance (weightings)
constantly evolve due to progressively gained knowledge. The list of varying design
options of Section 1.3.1 provides a starting point for what the term preferences can
encompass in the context of ship design. Hence, in this dissertation the following rel-
evant characteristics are considered to be typified as preferences within a progressive
approach:

• Performance requirements, that is, requirements regarding the performance of
the system as a whole. Examples are: ship speed, range on fuel, endurance,
and seakeeping characteristics. These are prone to vary due to the constantly
evolving trade-offs of conflicting aspects (e.g., high speed versus seakeeping).

• Technical (system) requirements and design options, that is, specific (sub-) solu-
tions (including their, size, shape, and number) for achieving a desired function-
ality (see Section 1.3.1). These include the hull, systems, and the configuration
or layout of the vessel. For example, exploration might start with a slipway as
the preferred solution option for the launch and recovery of a RHIB but, due
to new insights into the large design impact of the slipway, davits may later be
preferred. In addition, the preferred arrangement and layout of the systems and
spaces may also change based on gained insight (DeNucci, 2012).

• Constraints and bounds of the design space. That is, the performance require-
ments, technical system requirements, and design options mentioned above may
include bounds. For example, a hull-shape has an upper and lower limit to its
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length, beam and depth, or might have limits to length/beam ratios. Also, the
number of a type of system can be limited to a discrete amount (e.g., one or two
cranes). New insight may result in the need to add or adjust such constraints
and variable bounds.

Nonetheless, limiting the extent of the design space should only be under-
taken once it is certain that no potential solutions are cut-off. For example,
variable ranges might gradually be reduced once the designer is certain that
their limits are not of interest. However, the opposite might also occur. Design
exploration can also emphasize the need to enlarge variable ranges. This occurs
when the exploration approaches the current limits of the design space. Hence,
variable ranges must be extended to enlarge the design space into the general
search direction.

The above illustrates that there are a multitude of characteristics which could be
considered as preferences in the context of ship design. Because these characteristics
represent more than solely the preferences of the user, hereafter the broader term of
criteria is used to describe the evolving set of user controlled characteristics relevant
in the early concept exploration stage.

In addition to the above, there are also characteristics which do not vary within
the process. In theory any characteristic could be changed based on new insight
(even the model itself), yet in practice many aspects are still fixed throughout the
exploration. This may be due to limitations of the model used (see a discussion in
Section 4.2.3) or simply due to a limited scope of the problem (e.g., see the test-cases
in Chapter 7). A further discussion is provided in the Conclusions (Chapter 8).

3.4 Generating and searching for solutions

Within the generic process of a progressive search approach generating solutions refers
to the task of integrating user preferences in an algorithm to search for and generate
new design solutions. This implies the need for a synthesis model capable of creating
and assessing solutions for relevant performance characteristics which are then used
in a search algorithm to generate new solutions. As mentioned in Section 3.2, the
synthesis model can be either simple or complex depending on the complexity of the
design artefact.

In the context of this dissertation the ship synthesis model has several required
abilities (e.g., also see Andrews’ list of preliminary ship design tool characteristics in
Section 1.5):

• Architectural description, that is, in addition to a numerical description of the
vessel the synthesis model should also provide an architectural description in-
cluding the general layout of systems and spaces in a 3D arrangement1. This is
important because systems, their layout, and the overall general arrangement
of the vessel, have a large influence on the design solution, its performance and
the cost.

• Diverse solutions, that is, considering the many different design options that
may be varied at an early stage (Section 1.3.1) the synthesis model should be

1Andrews (2011) refers to this as the need for coherent solutions (also see Section 1.5).
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able to (i) integrate these varying options into believable and technically feasible
solutions, and (ii) maintain a diverse set of solution options. A very similar set
of solutions will only limit the extent of the exploration effort. Preferably, the
synthesis model should also not be bounded by many traditional rules-of-thumb
or other implicit constraints that may limit diversity and hence the broadness
of the exploration (see Section 6.3).

• Speed, that is, the speed at which design solutions are generated should be
fast. In a progressive search approach human interaction is focussed on the
evaluation and exploration of a large set of solutions. The generation of these
solutions is left up to an automated computer model. If the user has to wait
for long periods between each iteration of the progressive approach (e.g., days),
because a synthesis model is slow at generating design solutions, he or she will
likely lose focus or fail to keep track of the decision steps in each consecutive
iteration. Hence, to keep time between consecutive decision making steps short,
the synthesis model should be able to quickly generate solutions without much
human intervention. Hence, ideally a large set of varying design solutions should
be available in hours.

In recent years the need for more detail earlier in the design process to support
concept exploration, has led to the development of several novel architectural ship
synthesis models, see Andrews et al. (2012) for a recent overview. These are: the
Design Building Block (DBB) approach (Andrews, 1981; Pawling, 2007), the Intelli-
gent Ship Arrangement (ISA) approach (Nick, 2008; Daniels and Parsons, 2008), and
the Packing-based approach (van Oers et al., 2009; van Oers, 2011b; van Oers and
Hopman, 2012). Their relevant characteristics are summarised in Table 3.1.

Table 3.1: Architectural synthesis models for preliminary ship design, adapted from
Gillespie (2012)

DBB ISA Packing

Driver volume area volume
Architectural 3D full ship 2D deck 2.5/3D full ship
Diversity overall arrangement overall
Speed days/manual hours/automated hours/automated
Num. of solutions few hundreds thousands

All three approaches provide an architectural description of the vessel. However,
only the DBB and Packing approach allow full variation of both layout as well as
overall ship characteristics. Both ISA and Packing are capable of generating a large
set of solutions in a matter of hours, yet the manual DBB approach only allows a
few solutions to be generated (at a higher level of detail) in the course of several
days. Thus, only the Packing approach allows both a variation of the layout as
well as the overall ship characteristics while still maintaining the ability to generate
a large (thousands) set of diverse design solutions in a matter of hours. Hence,
the Packing-based ship synthesis model is considered to best fit the requirements
mentioned earlier, that is, those required for application within a progressive concept
exploration approach.
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In summary, the Packing approach is capable of quickly generating a large set
of diverse design solutions integrating a multitude of varying options (e.g., different
systems, performances, hull sizes). Its capabilities as a preliminary ship design tool
have been demonstrated in several applications (Wagner, 2009; van Bruinessen, 2010;
van Oers, 2011b; Zandstra, 2014; Baudeweyn, 2014; Zandstra et al., 2015). A further
description of the Packing-based ship synthesis model, including its limitations and
modifications for the purpose of applying it in a progressive exploration approach, are
dealt with in Chapter 4 and in Appendix A.

3.5 Exploring results and gaining insight

The next step in the generic progressive process is exploring the results. The main
goal of this step is to gain insight into how and why the (currently) defined preferences
are reflected into particular solutions. This insight can then be used to decide on if
and how to adjust preferences in subsequent iterations of the progressive approach.

Depending on the complexity of the solution itself, this step can be a relatively
straightforward or extremely complicated task. For example, consider the differences
in complexity of exploring and evaluating the silhouette of several (tens) car shapes
(Cluzel et al., 2012) versus exploring the arrangement and performance of several
thousand ship designs (van Oers et al., 2008; Pawling et al., 2014). Moreover, although
a ship concept has many attributes that can be explored (e.g., main dimensions,
general arrangement, performance, cost), the design impact of these aspects cannot
be studied independently (Section 1.1). For example, a criterion for a bigger helicopter
will result in a larger required helicopter landing deck, increasing the main dimensions
of the vessel, thereby influencing weight and finally the balance of resistance and
powering and range on fuel.

The complex interdependencies between different design aspects cannot always
easily and clearly be defined early-on. It is in the exploration step of the progressive
approach where insights regarding these interdependencies is to be gained. After
which this insight will aid the designer in evaluating how and why the currently
defined criteria (preferences) are interacting.

Clearly, exploring the results and gaining insight within an progressive exploration
approach for preliminary ship design is important and therefore warrants special at-
tention. Chapter 5 further discusses the need and development of specific exploration
methods to enable useful insight to be gained from concept exploration.

3.6 Adjusting preferences and generating new solu-
tions

The insight gained from exploring the results of the generated solutions is used to make
decisions regarding the currently defined preferences. In general, a user can choose
to adjust, remove, or add preferences. These are then used in the next iteration of
the progressive approach to generate a better matching and more desirable new set of
solutions. The search algorithm plays an important role in this step. The generation
of solutions is automated, hence a search algorithm should guide the generation of
these solutions towards the currently defined user preferences.
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Evolutionary search algorithms (e.g., genetic algorithms) are often used to steer
a progressive process (Section 2.2.3). Their work-flow (Figure 2.5) easily fits into the
progressive search process described in Figure 3.1. In addition, individual solutions
are rated based on their “fitness”. This allows a very flexible definition of the objective
function(s) ranging from simple human evaluation (e.g., rating individuals on a scale
of 1 to 10, 1 being very undesirable or unfit, and 10 being very desirable and fit) to
hybrid functions which combine human evaluation and more traditional objectives
containing numerical performance measures to define individual fitness (e.g., as in
Buonanno, 2005).

It was discussed that the term preferences in the context of ship concept explora-
tion is not sufficient. A naval architect, based on new insight, may choose to adjust
preferences of multiple aspects of the exploration problem such as: performance and
technical requirements, constraints, and variable limits (Section 3.3). These should
then be fed to the ship synthesis model and search algorithm to generate a new set of
more relevant and more desirable design solutions. This is a critical step, for failing
to guide the exploration effort towards more desirable solutions diminishes all bene-
fits of a progressive exploration approach. Hence, Chapter 6 will further discuss how
adjusted criteria (preferences) can be used to generate relevant design solutions and
thereby steer the concept exploration effort towards more desirable results.

3.7 Selecting desired solutions

The last step in a generic progressive approach is the selection of the final desired
solutions, that is, those which warrant further analysis in subsequent (possibly more
detailed) design stages. In this step, the user is mostly aided by the gradually built up
understanding of the problem gained by the iterative applications of steps 1 through
4 of Figure 3.1. In addition, assuming the user is confident that all relevant aspects
have been covered in the exploration, the final set of preferences provides a mechanism
that can be used for selection.

Depending on the complexity of the problem to which the progressive approach
is applied the selection step can be very simple or quite complex. For example, some
applications only use a single subjective preference (e.g., the “coolness” of a fashion
item) to evolve a set of designs using an interactive genetic algorithm (Kim and Cho,
2000; Cho, 2002). Others combine a single user selection representing the fitness of
a solution with additional numerical characteristics to help the user select the best
design in each iteration (Lameijer et al., 2006). In these cases, selection of the final
“best” option was simply done by the user from the last set of solutions (i.e., by
selecting the one preferred most). Naturally, the user considers more information
at the final stage than at the beginning of the process. A considerable amount of
knowledge has been gradually built up during the process, all of which helps in the
final selection, both explicitly or implicitly.

A more complex case is a selection from a Pareto-front, that is, selecting design
solutions evolved over more than one preference. In these cases the final selection is
made after having evaluated the non-dominated solutions of the final set. For example,
(Buonanno, 2005) combines several numerical characteristics in one objective, and one
subjective measure for producibility in a second objective. Again, the final selection
from the non-dominated front is left to the user. Buonanno comments that the
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final selection could actually not be made from this set. Exploration revealed that,
although these designs represented a good numerical performance score, they were
undesirable based on engineering judgement.

Van Oers et al. (2008) also recognise issues that are faced when selecting designs
from a Pareto-optimal set (also see Chapter 5). They explain two main issues:

• First, non-dominated solutions often lack explanatory nature because the ob-
jectives use to find them are usually unfamiliar to designers. For example, an
objective may represent multiple combined design characteristics. In Buonanno
(2005) the numerical objective is comprised of several traditional design char-
acteristics which makes it difficult for a designer to select or evaluate based on
this compound and often unfamiliar number.

• Second, algorithms used to produce non-dominated sets have a finite ability
to distinguish between designs. Additional engineering judgement is required
to identify that designs may in fact turn out to be infeasible due to as of yet
unconsidered aspects, even though they have a good numerical score (e.g., as-
sessment might reveal they are not producible). This issue could be solved by
adding additional objectives to better differentiate solutions. However, adding
more objectives for each distinguishing measure is considered undesirable as
this reduces algorithm performance and may results in every solutions being
non-dominated (see Section 2.2.3 and Köppen and Yoshida, 2007). Hence, other
methods are required if additional engineering judgement must be added (see
Chapter 6).

The above indicates that selection in a concept exploration context should not solely
be based on the objectives used by the search algorithm, but rather on all relevant
design properties. Again, a thorough exploration approach should aid in this re-
spect. Gained insights can be used, together with the evolved set of preferences in
the interactive progressive approach, to select the final desired design solutions.

3.8 Closure

This chapter has provided a process description of a generic progressive exploration
approach as depicted in Figure 3.1. The applicability of each step in the context of
preliminary ship design and concept exploration was discussed. As such, the steps of
the generic process must be adjusted to suit the application to ship design. Figure 3.2
presents the proposed adjusted work-flow of the interactive approach.

As with the generic approach, the proposed process evolves around a set of pref-
erences which are, in the context of this dissertation, referred to as design criteria
(Section 3.3). This set of criteria gradually evolves throughout the course of applying
the progressive iterations in the evolutionary approach. Hence, initially the set is
often limited and different compared to the final criteria after exploration (step 1).
Criteria which are deemed relevant and desired by the naval architect are then used
within the Packing-based ship synthesis model, and its genetic algorithm, to gener-
ate a new set of designs best fitting those criteria (step 2). Hence, the user can, by
adjusting the design criteria in each iteration, interactively steer the focus of the ship
synthesis model towards different areas of the solution space (step 4). Off course,
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which, how, and why criteria must be adjusted should follow from insights gained
during the design exploration step (step 3).

The critical steps in the proposed approach are identified as: (i) generating a
diverse set of designs; (ii) exploring sets of designs and criteria to gain insight; and
(iii) using this insight to adjust criteria and thereby, through feedback, create a new
set of more relevant designs. The final step, selecting desired design solutions, is also
important, but it relies heavily on the insight and understanding gained from applying
the first critical steps. That is, the gradually evolved set of criteria and accompanying
design insight can be used to select final desired solutions. That said, the focus of the
development of the proposed approach will be towards the critical steps mentioned
earlier (step 2, 3 and 4 in Figure 3.2).

Chapter 4 covers developments and changes made to the Packing-approach for it
to work within an interactive progressives approach (step 0 and step 2). Chapter 5
covers the exploration of a large set of design solutions with the aim of gaining insight
(step 3). Chapter 6 covers the use of insight to adjust criteria which are then used
within the Packing-approach to produce a new more relevant set of designs (step 4).

(0) Define
exploration inputs

(1) Define initial
design criteria

(2) Generate di-
verse set of designs

(3) Explore set of
designs and criteria

(4) Adjust
and/or expand

criteria?

(5) Select final
desired design(s)

Insight

no

yes

Figure 3.2: Proposed work-flow and process for an interactive and progressive
concept exploration approach for preliminary ship design



Chapter 4

Generating design solutions

“There are two ways of constructing a software design:
One way is to make it so simple that there are
obviously no deficiencies, and the other way is to make
it so complicated that there are no obvious
deficiencies.”

– Tony Hoare (1980)

Section 3.4 elaborated the choice for the Packing-based ship synthesis model. This
chapter covers the underlying principles of the approach. Also, it addresses several
aspects of the synthesis model that must be improved to make it applicable for use
within the proposed interactive and progressive exploration approach (Chapter 3).

4.1 Packing-based ship synthesis model

The need for early requirements elucidations, and hence the need for generating
concept designs quickly and at a higher level of detail, led to the development of
a packing-based ship synthesis model. This approach is able to rapidly generate a
large and diverse set of feasible ship designs covering a wide range of possible trade-off
options. This set may then be explored by the naval architect in search of promising
design alternatives. The workings of the Packing-based ship synthesis model are ex-
tensively discussed and documented in van Oers et al. (2009); van Oers (2011b); van
Oers and Hopman (2012).

The basic process of the packing-based ship design model is shown in Figure 4.1,
it consists of three main steps:

1. Packing algorithm. The basic inputs of the packing-approach, that is, the in-
dividual building blocks (systems and spaces), Packing-rules, and the (initial)
input variables, are combined in the packing-algorithm to produce an architec-
tural description of the ship.

2. Estimate technical characteristics and performance. The architectural descrip-
tion of the ship allows us to apply various tools and prediction models to estim-

45
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ate performance measures and technical characteristics of each design solution.
Examples are: cost, weight, resistance, speed, (fuel) range, hydrostatics, and
simple (damage) stability.

3. Genetic search algorithm. The constraints and objectives combine several char-
acteristics and performances of each design to help search for more promising
and feasible solutions. Constraints also ensure that non-negotiable requirements
are met. These are typically: all building blocks must be packed, the vessel
floats upright, there is sufficient intact and damage stability, and the ship meets
its speed and range. The output of the genetic search algorithm is a new list
of input variables which is then fed-back to the packing algorithm to create a
new design. When a design alternative meets the constraints, it is stored in a
database.

Using these three steps, the Packing-approach can generate design solutions, which
depending on the inputs (i.e., building blocks and Packing-rules) can be very diverse.
That is, in terms of the type and number of building blocks used (e.g., different blocks
to represent different system options) and in terms of ship characteristics (e.g., hull
shape, length, beam, depth, and layout). Each step is described in more detail below.

(1) Packing
algorithm

(2) Estimate
characteristics

and performance

(3) Genetic
search algorithm

Store solutions

ship
description

performance
measures

n
ew

variab
les

-Building blocks
-Packing-rules

-Constraints
-Objectives

-Initial variables

Figure 4.1: Packing-approach process with required inputs

4.1.1 Packing-algorithm

The packing algorithm combines several elements to produce a so called packing-based
ship description. These are (taken from van Oers, 2011b; Zandstra et al., 2015):
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• Objects. These represent systems and/or spaces which may or may not change
shape. For a more extensive overview of how they are modelled see (van Oers,
2011b). The available object types include:

– Envelope object to model the hull and superstructure shape
– Subdivision objects to model decks and bulkheads
– Hard objects to model physical objects which may not change shape (e.g,

a weapon system or diesel engine).
– Soft objects to model physical objects which may change shape (e.g., fuel

tanks, or area-based accommodation spaces).
– Free space objects to model spaces which may not be occupied by other

object types (e.g., a free path of flight above a helicopter deck or line of
sight of a radar system).

– Connection objects to model connection between other spaces (e.g., access
shafts, elevators, up and down-takes, or passageways.

• Positioning space. This is the space into which all objects are placed using the
packing algorithm. All objects must fit in this square-shaped space without viol-
ating the user-defined overlap rules. The positioning space is further subdivided
into a grid of small square shaped voxels. These form the basic building-block
from which all objects (excluding the envelope and subdivision) are built.

• Overlap rules. These rules define whether objects are or are not allowed to
overlap. For example, a diesel engine may not overlap with a fuel tank, while a
fuel tank may overlap with a bulkhead in which case it is split.

• Design changes and overlap management. If overlap rules are not met, an object
may, depending on its type and user-defined constraints, change position and/or
shape to comply with the overlap rules. Once an object is placed it no longer
changes shape and position.

• Packing process. This process integrates the above elements into a three dimen-
sional ship description. The pseudo code for the Packing process is shown in
Algorithm 1. Van Oers (2011b) gives a more detailed description of each step.

Together the above elements provide a three dimensional ship description which can
be used by performance prediction tools to assess various characteristics of the ship.

More recently van Oers and Hopman (2012) developed a faster 2.5D version of
the original 3D packing-approach presented in (van Oers, 2011b). This version has
a limited “resolution” in transverse direction, that is, it is limited to three objects
being placed adjacent in transverse direction (i.e., one on port side, one on starboard,
and one at the centreline). Nonetheless, the 2.5D version still applies the same basic
packing process and elements as described above.

4.1.2 Estimate characteristics and performance

The Packing-approach uses several tools to assess basic feasibility and naval architec-
ture practices. The model used in this dissertation includes the following technical
characteristic and performance estimates (see Appendix A and Zandstra et al., 2015):
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define all objects and the packing sequence using input parameters from the
search algorithm and naval architect;

foreach object in sequence do
retrieve information of current object;
build up-to-date positioning space for current object;
detect possible overlap;
apply overlap management to pack current object while meeting relevant
user-defined constraints;
if current object is packed then

store results and continue to next object;
else

fail elegantly and stop the packing process;
end

end

Algorithm 1: Packing process from (van Oers, 2011b)

• A density-based weight estimate for SWBS groups 100 tot 700 with correction
for hull and deck-house material choice, hull length, and discrete weights for
larger pieces of equipment (see Takken, 2008).
• An estimate of initial stability based on hydrostatics, centre of gravity, and

loading condition. Trim is kept within reasonable bounds by limiting the lon-
gitudinal separation of the centre of gravity (LCG) and centre of buoyancy
(LCB).
• Resistance and propulsion estimate at the design draft using a regression model

of Royal Netherlands Navy (RNLN) model test data.
• Reserve buoyancy through a floodable length calculation and required damage

length percentage.
• An estimate of procurement cost based on the procedures described in NATO

standard ANEP-41.

The list of tools above may change depending on the design project (e.g., ship motions,
sea-keeping, or operational simulations can also be added). However, because for every
successfully packed design these tools are executed, a trade-off must be sought between
the execution time of the added analysis and the relevance of its predicted measure to
the exploration effort. Already the currently included prediction tools take up most
of the evaluation time for one design (i.e., the packing process itself only represents a
relatively small part).

Some simple speed improvement have been made by changing the order and de-
pendency between performance and technical characteristics prediction tools. For
example, there is no use in calculating procurement cost if the initial stability of the
vessel is insufficient for it to float upright. Nonetheless, some performance measures
and characteristics are required for all designs. Examples are: the resistance and
propulsion, which is used for sizing the propulsion plant; and a reserve buoyancy
calculation which is used to define the bulkhead placements.
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4.1.3 Genetic search algorithm

The implemented genetic search algorithm, NSGA-II by Deb et al. (2002), is used
together with constraints and objectives to search for and generate design solutions.
To ensure basic technical feasibility, several non-negotiable requirements are applied
as constraints. These are further discussed in Chapter 6.

The objective function is used to guide the search process. By default a single
objective, packing-density, attempts to minimise the unused volume in the envelope.
As such, it guides the search towards relatively small and compact design solutions.
Nonetheless, the randomness introduced by the search algorithm’s genetic operations
ensures sufficient diversity in overall size and arrangement of the vessels. Again, the
goal is to create a large and diverse set design solutions from which a designer can
explore and pick interesting options. Hence, the objective is not to find the design
which solely maximises packing-density.

Chapter 6 provides a more detailed discussions on the definition of the objective
function. In addition, van Oers (2011b) also provides several studies showing the
effect of using different, or multiple, objective functions. This chapter also presents
a short study to show the effects of the genetic algorithm mutation rate on the yield
and diversity of the packing-approach (Section 4.2.4).

4.2 Improvements to Packing

Although the Packing-approach synthesis model has proven itself in various studies
(e.g., see van Oers, 2011b; van Oers and Hopman, 2012; Wagner, 2009; Wagner et al.,
2010b,a; van Bruinessen, 2010), the specific use of the Packing-approach within an
interactive progressive design approach warrants additional improvements and devel-
opment. The aspects which are discussed and addressed are:

• The consistency of the chromosome representation (i.e., how the Packing-based
ship description is represented within the genetic algorithm). The Packing-
algorithm’s overlap management changes system positions, hence the genetic
algorithm representation of the design has to reflect these changes in order to
remain consistent.

• The speed with which the Packing-approach generates a set of designs. This is
relevant for the proposed interactive approach where a designer should not have
to wait for results (see Section 3.4).

• The ability of a Packing-approach design model to have diverse and varying
design options (see Section 1.3.1).

• The ability to maintain diversity, that is, generating a set of designs covering a
diverse set of varying design options (also see Chapter 6).

The remainder of this chapter covers the above aspects and develops solutions that
are incorporated in the Packing-approach.

4.2.1 Chromosome representation

Due to the nature of the packing algorithm there may be a discrepancy between the
chromosome representation within the genetic algorithm and the final description of
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the ship after packing. This can be caused by the overlap management routines in
packing.

For example, consider blocks A through E in Figure 4.2. In the genetic algorithm
the chromosome representation of the (longitudinal) locations of the blocks is given
as a vector x = [xA, xB , . . . , xE ]. The packing process then attempts to place each
block, in sequence, at its initial location and checks for any overlap (Algorithm 1).
In the example, overlap between E and D is detected when placing the last block E.
Packing will then move block E to the closest free position in order to remove the
overlap and remain feasible. Hence, there may be a difference between the initial
and final position of each block. This behaviour of the packing process poses several
problems:

• First, it reduces the efficiency of the genetic algorithm. That is, the genetic
algorithm is working with a “false” representation of the actual ship. Any
genetic operations (e.g., crossover and mutation) can thus result in different
expected outcomes. For example, consider two vessels where the chromosome
representations places a certain system on deck one for both vessels. After
packing, however, one of the ships has the system shifted to deck two because
of a lack of space on deck one. The genetic algorithm, however, still assumes
that both systems are positioned on deck one. Hence, a crossover operation is
likely to produce new designs with the system on deck one.

• Second, the user or naval architect is working with the actual description of
the ship. So, once a certain system position is considered desirable, the naval
architect will want to steer based on this preference. However, if the location
of the system is not correctly represented in the chromosome representation of
a design, the genetic algorithm will promote the wrong position.

Consider the example in Figure 4.2. If position 3 for block E is favourable,
this solution would be considered as better by the naval architect, who would
then assigns a higher rating to this design. The genetic algorithm, however,
still believes that block E is at position 4.5 (i.e., from the original chromosome
representation). Again, this causes problems when genetic operations are applied
to this chromosome and others which do actually have system E in position 4.5.

• Third, the discrepancy should in theory also effect the speed of the packing
algorithm. The overlap management routines, which detect and remove over-
laps, use computational resources. Hence, when a repaired chromosome is re-
evaluated, time should be saved as the algorithm does not need to remove over-
laps again. A short study, however, found that the speed increase is negligible.
This is because the relative amount of computational resources spent on overlap
management is low compared to calculating ship characteristics such as hydro-
statics, weight, and floodable length.

The problems above illustrate the need to repair the chromosome representation of
a design after it has been successfully packed. This repair step is also shown in
Figure 4.2. It ensures each blocks final, as packed, position is used in the chromosome
representation and within the genetic algorithm’s operations.
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Figure 4.2: Chromosome representation, packing operations and gene repair

4.2.2 Speed

When integrating synthesis models into an interactive progressive approach, speed is
an important aspect (Section 3.4). Consider the following:

• First, the approach is intended for the preliminary design stage where time and
resources are limited. In addition, the iterative process of design changes, design
reviews, and consequently further changes, requires a quick “turnaround time”.

• Second, and this is in-line with Andrews’ list of tool characteristics (see Sec-
tion 1.5), tools or methods in early stage design should be responsive and non-
rigid. Slow tools can damage the dynamic design process, in which case design-
ers may fall-back to quicker, but not necessarily better, tools to keep up and
support decision making.

• Thirdly, within the proposed progressive approach the human user plays a cent-
ric role. That is, within each iteration of the process of Figure 3.2 a user is
tasked and responsible for analysing results, making decisions, and adjusting
criteria. This may cause problems (e.g., fatigue and loss of focus) when inter-
action moments follow in quick succession, especially when dealing with a large
amount of complex results, as is expected in this research. On the contrary, too
long of an interval between interaction moments is also unwanted. In such case
a user might require valuable additional time to re-familiarize with the problem
at hand.

Already, several of the above considerations led to the development of a faster 2.5D
version of the original 3D Packing-approach (van Oers and Hopman, 2012). Most
importantly, this 2.5D versions has a limited resolution in transverse (y) direction
which reduced the computation effort required for the packing process.
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Even so, considering the importance of the speed of the Packing-approach for
use in the proposed progressive and interactive approach, an extensive review of the
program code was performed to check if further speed improvements could be made.
Fortunately, van Oers and Hopman (2012) provide a table of speeds of various versions
of the Packing-approach. The fastest speeds from this reference are compared with
the newest Packing-approach version.

Table 4.1 presents the differences in Packing-approach speed, that is, the time
required to evaluate a single design. As in the original table of van Oers, the times
have been scaled to one CPU thread, thus on a modern day octa-core machine (i.e.,
used for the last 2.5D MCMV 2015 cases) the times are divided by eight. Hence a
full run of 6464 designs, using the latest 2.5D version, requires only 44 minutes (0.4
seconds per attempted design), or roughly 352 minutes (3.2 seconds per attempted
design) if scaled to a single CPU thread. This is considered sufficiently fast, as the
model is able to generate sets of designs in the iterative approach in a matter of hours
(depending on the size of the set). In addition, the latest available desktop processors
should allow further improvements by a factor of two to three without requiring the
need for expensive supercomputing power.

Table 4.1: Comparison of Packing-approach speeds. The time per designs is scaled
by the number of CPU threads used (i.e., the actual time is multiplied by the number
of CPU threads used). The values for first three cases are the fastest times as recorded

in (van Oers and Hopman, 2012)

Case and version
#

Vars.
#

Obj.
Designs

total
Designs
feasible

Time/
design [s]

Time/
feasible

design [s]

3D drill-ship 2010 75 50 11200 5922 86.8 164.2
3D frigate 2010 238 113 23580 1407 73.3 1229.2
2.5D MCMV 2012 75 38 972 184 8.4 44.3
2.5D MCMV 20151 268 86 6464 1889 5.8 19.8
2.5D MCMV 20152 268 86 6464 1545 2.0 8.4

Note, the presented comparison of speeds is not meant to be used in the quant-
itative sense. Thoroughly measuring the exact speeds improvements, would call for
a comparison of the different versions of the code in a controlled environment with a
single design model running on the same computer with equal problem set-ups.

4.2.3 Varying design options

Until recently, presented applications of the Packing-approach were only able to vary
several of the design options listed in Section 1.3.1 concurrently (i.e., within a single
run of the Packing-approach tool). For example, though van Oers (2011b) concur-
rently varies three hull types in his frigate application, variation of other aspects (e.g.,
those mostly related to varying systems), such as the weapons and sensor suite where
attempted, but required a new run with a manually altered design model.

1Laptop, Intel Core i7-2760QM, 8GB RAM
2Workstation, Intel XEON E5-1620, 16GB RAM
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To investigate if and how the Packing-approach could use a single design model to
generate a large and diverse set of designs concurrently (e.g., a set with many varying
design options such as those listed in Section 1.3.1), a MSc. research project was
undertaken by Zandstra (2014).

Zandstra developed a Packing-approach design model for a mine-countermeasures
vessel (MCMV) which includes the ability to concurrently alter a large number of
design characteristics. The MCMV model supports variations in: required ship per-
formance (e.g., transit, maximum and operational speeds and ranges); platform sys-
tems (e.g., propulsion configuration, engine types); combat systems (e.g., type and
number of weapon systems); and MCM related systems (e.g., type and number of
unmanned surface and underwater vehicles, launch and recovery systems, diver sup-
port, and slipway). In addition, a simple crew model was developed which keeps track
of the chosen system configuration for a design, and then updates the required crew
capacity as well as other platform characteristics accordingly (e.g., capacities for the
grey and fresh-water tanks, the areas for crew facilities and auxiliary spaces, and the
sizes of stores). Refer to Appendix A for more detail on the applied MCMV packing
model.

(a) (b)

(c) (d)

Figure 4.3: Four designs with different design options generated by a single MCMV
packing model

Figure 4.3 displays four very different design configurations produced with Zand-
stra’s MCMV model. Each design has a different set of options. They were all
produced without the need for manually altering the packing model’s settings (e.g.,
as was the case in earlier Packing-approach models). It is thus possible to generate a
diverse set of designs using a single model in the Packing-approach.

Zandstra’s results do however show that such a model comes at a cost. First, the
yield (e.g., number of successfully packed designs) was found to be lower compared
to a design model without such variations. The varying design options makes it
more difficult for the Packing-approach to find feasible design configurations. Second,
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Zandstra found that the average attained packing density (i.e., the used objective
function value) of the produced designs is lower compared to a design model with
fixed design options. The increase of the problem dimensionality somewhat decreases
the performance of the search algorithm. That is, instead of searching for compact
configurations for one combination of design options, it now has to search for multiple
compact configurations for many combinations of design options.

4.2.4 Maintaining diversity

Van Oers (2011b) studied the performance of the Packing-approach genetic algorithm
(NSGA-II by Deb et al., 2002) to search for and generate new ship configurations.
Van Oers investigates the use of two objective functions, one to promote compact
designs (e.g., by maximising packing density), and one to promote diversity among
the design configurations (e.g., by using a specially developed diversity measure). He
concludes with the hypothesis that the use of a diversity objective will cause the
genetic algorithm to focus more on creating diverse designs than on finding compact
designs. Hence, he recommends to use only a single objective (i.e., packing density)
to search for new ship configurations. The diversity of the created designs is then left
to the randomness of the genetic algorithm’s mutation and crossover operations.

Various applications of the Packing-approach have shown that indeed the genetic
algorithm’s operations (mainly mutation) are sufficient to generate a large set of feas-
ible, diverse, yet compact designs (e.g., see van Oers, 2011b; van Oers and Hopman,
2012; Wagner, 2009; Wagner et al., 2010b; van Bruinessen, 2010; Zandstra, 2014;
Baudeweyn, 2014; Zandstra et al., 2015). These studies have provided some practical
values for the genetic algorithm settings that seem to produce desired results. What
is lacking, however, is a more thorough investigation of the influence of mutation rate1

on the number and diversity of the designs found by the Packing-approach. Mainly
the diversity (or spread) of the resulting design solutions is considered relevant for
exploring and covering a wide design space. Hence, as a part of this research, a short
study was undertaken to investigate the effects of mutation rate.

Set-up

A packing model of a mine counter-measures vessel (MCMV) which was developed
by Zandstra (2014) is used (see Chapter 7 and Appendix A). The problem definition
for the genetic algorithm is defined in Equation (4.1), Chapter 6 and 7 give a thor-
ough explanation of this problem definition. Further settings of NSGA-II used are:
population size pop=128, number of generation gen=100, crossover probability pc=1,
crossover distribution index ηc=2, and mutation distribution index ηm=5. The cros-
sover index, mutation index and crossover probability match settings that are used
in literature (Deb and Agarwal, 1994; Deb and Goyal, 1996). The population and
generation size are chosen equal to settings often applied and found practical for the
Packing-approach (van Oers, 2011b; Baudeweyn, 2014; Zandstra, 2014; Duchateau
et al., 2015). In total seven tests (n=7) were performed for each setting of mutation
rate pm={0, 0.025, 0.05, 0.1, 0.2, · · · , 0.7}.

1Mutation rate is the parameter which maintains diversity and counters convergence to local
optima within genetic algorithms
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min
x

f −PD(x)

s.t. h1 systemsplaced(x) = systemstotal(x)

g1 T (x) ≤ Tdes(x)
g2 ‖LCB(x)− LCG(x)‖ ≤ 2.0m
g3 GM(x) ≥ 0.75m
g4 GM(x) ≤ 3.50m

x ≤ x ≤ x

(4.1)

For each mutation rate pm, the average number of feasible designs, average number
of unique designs, and best objective score (packing density) was determined. The
number of unique designs was determined by using a simple filter which identifies
duplicates based on several similar design characteristics. The filtering characteristics
used are: length, draft, displacement, GM , speed, range, endurance, installed power,
type of combat suite, propulsion concept; as well as the location of several key systems
including the bridge, radar, weapon systems, working deck, engine room. Any two
designs which have equal values (with a small margin) for these characteristics are
considered as equal.

Results

Figure 4.4 and Table 4.2 show the averaged results obtained from all runs. On average,
with no mutation pm=0 the Packing-approach found 84% feasible designs (i.e., out
of 12928 = 128× 101 designs attempted per run) whereas only 12% of the attempted
designs is unique. Hence, over 70% of the feasible designs are considered as very
similar. On the contrary, a higher mutation rate pm=0.2 produces a significantly
lower amount of feasible designs, that is, 13% compared to 84% with no mutation. The
amount of unique designs found, however, remains similar at around 13%, compared
to 12% with no mutation. The maximum number of unique designs are found at
a mutation rate of pm=0.025. Here the Packing-approach produced 47% feasible
designs and 23% unique designs (out of the 12928 total), yet with a slightly lower
packing density of 90.6%. The maximum packing density of 91.6% was found at a
mutation rate of pm=0.05. However, at higher mutation rates (up to pm=0.5) the
search algorithm was still able to find better packed designs than with zero mutation.
As expected, without mutation, or at very low mutation rates, the genetic algorithm
shows premature convergence to a local optimum (e.g., design solution). This is further
confirmed by the larger number of similar designs found with low mutation.

Figure 4.5 shows the “spread” of the designs found with respect to the objective
function, packing density, and one ship characteristic, displacement. Note the dis-
placement of a design results from many other characteristics, such as, main dimen-
sions, arrangement, installed systems, or the installed power. Hence, if displacement
shows a large variation, then these characteristics should consequently also show a
large spread.

Clearly, a higher mutation rate results in a larger spread of the results. Compare
the plots of a pm=0 and pm=0.2, where the first indicates that a large amount of the
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Table 4.2: Effect of varying mutation rate on the number of designs found (each run
attempted 12928 designs, results are the average of 7 test).

Mutation
rate pm

Feasible designs
Unique feasible

designs
Best objective

(packing density)
0 10873 (84.1%) 1529 (11.8%) 86.2%

0.025 6073 (47.0%) 2940 (22.7%) 90.6%
0.05 3550 (27.5%) 2395 (18.5%) 91.6%
0.1 2230 (17.2%) 2016 (15.6%) 90.7%
0.2 1739 (13.5%) 1733 (13.4%) 88.6%
0.3 1692 (13.1%) 1692 (13.1%) 87.9%
0.4 1770 (13.7%) 1770 (13.7%) 87.0%
0.5 1437 (11.1%) 1437 (11.1%) 86.1%
0.6 1363 (10.5%) 1363 (10.5%) 85.3%
0.7 1310 (10.1%) 1310 (10.1%) 85.6%
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Figure 4.4: Effect of varying mutation rate on the percentage of designs found (each
run attempted 12928 designs, bars show standard deviation of mean, n=7)

genetic algorithm’s effort was located in only a very small area of the plot. That is,
there is convergence towards a particular design solution. This was also confirmed
in Table 4.2. At some point designs are only produced close to this local optimum,
whereas in the plot for pm=0.2 even very late in the search (indicated by a more red
colour) there is still a significant spread in packing density and displacement of the
designs being generated. Although, the spread for a pm=0.7 is large, only a limited
amount of designs are generated with packing densities higher than 0.8 (or 80%). The
genetic algorithm fails to evolve those designs further.
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(a) pm = 0
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(b) pm = 0.05
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(c) pm = 0.2
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(d) pm = 0.7

Figure 4.5: Influence of various mutation rates on the “spread” and diversity of
characteristics of the found solutions. The colour indicates age of the solutions within
the genetic algorithm (red=young, blue=old). The histograms indicate the spread of

results.
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Discussion

The presented results should be interpreted with some care. First, the effects of
mutation rate depend on several aspects, such as, the number of variables of the
Packing model, the objective and constraint functions, and the chosen size of the
population and generation. All of these parameters where fixed in this simple study.
A different design model, or other NSGA-II settings are likely to change the presented
results. Second, the method of filtering the number of unique designs found within
each set is also subject to changes. Another set of filtering parameters will also give
different results. Finally, as can be seen by the standard deviation bars in Figure 4.4,
at lower mutation rates the convergence behaviour of the genetic algorithm can cause
a slightly larger spread in the results.

Nonetheless, the effects of mutation rate do agree with practical experiences from
earlier studies (van Oers, 2011b; Zandstra, 2014; Baudeweyn, 2014; Zandstra et al.,
2015). In these studies a mutation rate of pm=0.3 was often used as a rule of thumb to
start the exploration process. The results of Figure 4.4 and 4.5 confirm that with this
mutation rate the model is indeed likely to find a good distribution of unique designs.
However, the results show that a lower mutation rate should be more beneficial,
providing better objective scores without losing diversity. Nonetheless, the results
depend heavily on the Packing-model used, so a higher mutation rate ensures there
is no premature convergence towards a single design solution.

4.3 Further limitations and discussion

Currently, there are still some drawbacks of the Packing-approach which limit the
application to early stage design and concept exploration studies. The following
aspects, which where not addressed as part of this research, should further increase the
potential of the Packing-approach in an evolutionary concept exploration approach:

• In its current form the Packing-approach is limited to mono-hull type vessels.
The application to more unconventional or advanced hull shapes (e.g., cata-
marans, trimarans, SWATHs) is still considered possible (van Oers, 2011b). For
these less common hull-shapes the insight that can be gained from exploration
is considered to be even more important as designers can rely less on past ex-
periences. Moreover, unconventional hull shapes are worthwhile candidates in
cases where operability, large deck (layout) area, or high stability are required
(e.g., see Brown, 1991; Andrews and Zhang, 1995).

• Currently the Packing-approach requires the naval architect to identify relev-
ant variations of design options a-priori, e.g., refer to the process described in
(Zandstra et al., 2015). These varying design options are then combined, by the
naval architect, in a Packing design model such as the one developed by Zand-
stra (2014). In theory though, new insight uncovered through a progressive
concept explorations study potentially reveals the need for new, or previously
thought of as irrelevant, design options (e.g., an additional weapon system, or
the need for an alternative hull-shape). This would require that the new design
option can be added in-between iterations of the progressive approach. That
is, in addition to adjusting and/or expanding criteria, the naval architect would
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also adjust and/or expand the Packing model itself with the new design option
(e.g., see the work-flow in Figure 3.2). Although this is considered possible, the
Packing-approach does not currently support this type of model interaction.

Nonetheless, although new systems cannot currently be added during the
exploration process, it is currently already possible to add novel systems as
a place-holder a-priori. Thus, in case new technology or systems might be
expected in the near future or (as is often the case for warships) are under
development in parallel to the design process of the ship, place-holder systems
can be used to quickly assess design impacts of such future technology. For
example, the design impacts of using alternative energy sources such as LNG,
alternative power sources such as fuel-cells, or new types of high power weapon
systems could be quickly assessed. In these cases it is nevertheless essential that
the designer does not limit the design model based on existing best-practices as
these might impair the insight that can be gained when judging a new piece of
technology.





Chapter 5

Exploring solutions and
gaining insight

“There are known knowns; there are things we know
we know. We also know there are known unknowns,
that is to say, we know there are some things we do
not know. But there are also unknown unknowns – the
ones we don’t know we don’t know.”

– Donald Rumsfeld (2002)

This chapter covers the third step of the proposed work-flow of the interactive ap-
proach presented in Chapter 3, that is, exploring a large set of diverse design solu-
tions and the criteria imposed on them. The goal of this step is to gain insights that
provide the naval architect with the means to make decisions regarding the current
set of design criteria.

As mentioned in Section 2.3, the following tasks are deemed essential for under-
standing and gaining insight into the early stage ship design problem (i.e., performing
requirements elucidation):

1. Linking criteria to solutions and vice-versa, i.e., given a set of desired criteria
what potential solutions meet these, or given a prescribed solution what type
performance may be expected.

2. Identify if and when criteria conflict, i.e., this provides feedback on the existence
of trade-offs between criteria.

3. Identify how to avoid or resolve a conflict, i.e., identify which criteria need to
change, and by how much to stay balanced and feasible?

4. Identify why criteria conflict, i.e., to understand the underlying mechanisms
causing the conflicts so they may be avoided and documented for future projects.

This chapter develops methods which should aid the naval architect in performing
these tasks.

The chapter starts with a review of several existing exploration tools and tech-
niques from literature which are geared toward providing design insight. Elements

61
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from these existing tools are combined to create an interactive data exploration tool
tailored to exploring the interactions between numerical and architectural related
data, and the criteria imposed on this data, produced by the interactive approach
and the Packing-approach ship synthesis model (Chapter 3 and 4).

5.1 A review of exploration methods from literature

Section 2.3 has already briefly elaborated on the aspect of exploring results (design
solutions). Nonetheless, a more extensive overview of data exploration techniques
geared towards gaining insight is wanted. Especially considering the importance of
exploring and identifying new insights in an attempt to push the boundaries of the
exploration effort (e.g., see Section 1.5 and Andrews, 2011).

Trade space visualiser

Pennsylvania State University has an extensive research background into exploring
high-dimensional data (e.g., see Stump et al., 2003, 2004, 2009; Kim et al., 2006).
Through their trade space exploration research they have developed an extensive
data exploration tool-set called the Trade Space Visualiser (TSV). Various methods
of visualising high-dimensional data are included in the TSV tool-set, such as, glyph
plots, matrix scatter plots, parallel coördinate plots, and histograms. In addition,
various interactive data manipulation techniques are used to facilitate exploration,
such as, data brushing, filtering, and Pareto-front visualisation.

Together, the visualisation and data exploration tools are intended to facilitate
an (a-posteriori) design-by-shopping paradigm which allows decision makers to select
from a large set of design solutions. More recently, Stump et al. (2009) have added the
ability to guide exploration through various techniques called steering samplers. For
example, an attractor sampler attempts to generate new design points in a certain
preferred area of the current trade-space, or close to a preferred design point (see
Figure 5.1). These steering approaches are also centred around the idea of a progressive
design frame-work as was proposed for early ship concept exploration in Chapter 3.

Figure 5.1: Example of TSV steering by generating new design points (right versus
left) in a potential region of interest using attractor sampling (Stump et al., 2009)
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Pareto-fronts and cluster boundaries

The concept of Pareto-fronts was elaborated in Section 2.2.3. Mattson and Messac
(2003) combine several Pareto frontiers for different concepts into an s-Pareto frontier
(Figure 5.2). This combined Pareto optimal set can then be used in selecting the best
alternative concept. However, to retrieve a well-defined s-Pareto frontier, each concept
should be equally explored. For example, this method may give different solutions
when one or more sets are ill-defined, and therefore have a inaccurate representation
of their individual Pareto-front location.

Vasudevan (2008) acknowledges this problem and therefore proposes a more in-
sightful approach to generating multiple Pareto-fronts for ship concepts. By first
generating, then analysing, and finally re-generating Pareto-fronts, any gained in-
sight (e.g., recognising an ill-defined front, identified need for additional constraints,
or changes to requirements) may be added to the problem. Hence, this method may be
characterised as a progressive approach to generating and exploring Pareto-frontiers.

Figure 5.2: Defining the s-Pareto frontier for several design concepts (Mattson and
Messac, 2005)

Network representation and analysis

In recent work at University of Michigan, Gillespie (2012) applies elements of network
science to exploring and generating general arrangements early on. By capturing ar-
rangement constraints as relations in a network, a new type of representation of the
ship layout problem is created. By applying network analysis on the relational layout
network, embedded layout drivers can be identified either pre-layout or post-layout.
This aids the naval architect in evaluating general arrangements and their embedded
rationales.
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Figure 5.3: A network representation of dependencies of spaces within a general
arrangement. Some spaces have no dependencies while others show many interactions

(Gillespie and Singer, 2013).

Gillespie acknowledges that setting-up the relational layout network is an involved
task. This is especially relevant since a physical ship layout will constantly influence
the relative importance and even existence of relations in general arrangements (e.g.,
when it changes during the design process). For example, the relation between a
machinery room and crew quarters may be very important when these spaces are
close, but less so, or even irrelevant, when far apart (e.g., due to less impact of
noise and vibration). In such cases, a pre-layout driver may turn out to be of lesser
importance when actually laid-out within an arrangement.

Selection approach

Section 2.3 briefly introduced the selection approach by van Oers et al. (2008), a more
detailed discussion is provided here. Van Oers recognises several important aspects of
visualising results of optimisation-based architectural synthesis tools when attempting
to uncover design insight. These are:

1. Include all results in the exploration and decision making process. That is, do
not limit exploration of results to non-dominated design points. When adding
additional knowledge (e.g., in the form of constraints or objectives) it is likely
that the original non-dominated front will shift backwards (e.g., see van Oers
et al., 2008; Purton et al., 2015). Hence, dominated design points are equally
important when making decisions.

2. The need for a proper context and reference frame to display information. Dif-
ferent reference frames are required for different exploration problems. For
example, when exploring the global positions of systems, a side-view scatterplot
of system positions with respect to the hull provides an easy-to-understand and
familiar spatial overview of the design. Yet, when exploring relative positions of
two systems a different reference frame is required. Second, a familiar reference
frame allows the designer to apply engineering-judgement during exploration.
That is, it can provide a check as to whether the consequences of applying
criteria is as expected or warrants further investigation (Zandstra et al., 2015).
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3. The need to filter the display of information based on the deemed importance
to the problem by the designer. That is, it is impracticable and even unwanted
to display all information at once as this only obfuscates potentially relevant
insights from the user (Pawling et al., 2014). Hence, van Oers also recognized
the importance of priority based filtering starting from exploration of the most
relevant information (e.g., as deemed by the designer) to lesser important as-
pects.

4. The use of ranges of preferred values when selecting designs based on criteria.
Most often, a designer will impose a range of preferred values for ship charac-
teristics. For example, a minimum desired level of stability (GM ≥ 0.5m), or a
longitudinal position of a system within certain relative bounds (0.2 ≤ xsys/L ≤
0.6). To this purpose, van Oers applies a method involving hand-drawn polygons
surrounding those design options that are of interest (Figure 5.4).

Together, these aspects should improve the explanatory nature of the results of an
optimisation-based architectural synthesis tool, thereby also increasing the level of
acceptance of the obtained results, and decisions made.

Figure 5.4: Interactively down-selecting a ship general arrangement through pre-
ferred system positions (van Oers et al., 2008; van Oers, 2011b)

Because of its insightful ability to aid a designer in selecting from a large (and
diverse) set of ship designs including general arrangements, the selection approach is
used as a basis for the design exploration step of the proposed progressive approach
of Chapter 3. However, there is area for improvement.

Although, there is already some user interaction through the drawing of selection
polygons, the selection approach could further benefit from techniques used in the
other presented methods from literature. For example, data brushing and filtering
as applied in the TSV (Stump et al., 2003) or the visualisation of Pareto-fronts and
cluster boundaries (Mattson and Messac, 2003). This chapter further elaborates on
changes and improvements made to the selection approach to facilitate the exploration
of a large set of diverse design solutions as well as the criteria imposed on them through
the progressive approach.

5.2 Exploring results of the Packing-approach

Section 1.3.3 and 2.3 discussed the challenges and relevance of exploring a large num-
ber of design solutions and their characteristics in search of insight into the complex
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interactions between various design criteria and accompanying solutions. Even more
so, as discussed earlier in reviewing the selection-approach, the exploration of archi-
tectural ship characteristics benefits from other visualisation and exploration methods
than those used for numerical aspects. Henceforth, a distinction is made between the
exploration of predominantly numerical or predominantly architectural aspects.

Arguably, there are more than just these two “types” of characteristics which
benefit from bespoke visualisation techniques. For example, to gain insight from
operational effectiveness characteristics, which follow from operational analysis or
simulations, different visualisation techniques are beneficial (Veldhuis, 2015). Also,
Andrews (1981); Pawling et al. (2013) discuss the topic of style as being a typifying
characteristic of design representing various aspects which cannot be considered as one
of the traditional naval architecture domains (e.g., structures, stability, seakeeping,
resistance and propulsion). In their definition, style can both represent global aspects
such as, aesthetics or naval ship survivability, and local aspects such as, the internal
layout of a compartment. Hence, the exploration of architectural characteristics (e.g.,
layout, system solution options) which influence the design both globally and locally,
can be considered as a form of exploring style in design (Pawling et al., 2014). How-
ever, in this dissertation it was chosen to make a distinction between numerical and
architectural characteristics (refer to a discussion and recommendation in Chapter 8).

Section 5.3 covers the visualisation of numerical characteristics, the criteria im-
posed on them, as well as the exploration of interactions between these aspects. Sec-
tion 5.4 does the same for architectural characteristics. Finally, Section 5.5 covers
the exploration of interactions between numerical and architectural aspects and their
criteria.

5.3 Exploring numerical characteristics

5.3.1 Visualising numerical characteristics and criteria

Numerical ship characteristics, such as, length, speed, and range, are displayed using
2D scatter plots (Figure 5.5). 2D scatter plots provide a simple and familiar visual-
isation of all the designs in the current set with respect to two relevant characteristics
(e.g., length versus beam, and length versus displacement, are used in the example).
Each dot represents one ship description with multiple numerical characteristics. In
the example of Figure 5.5 length and beam are inputs bounded by an upper and lower
bound, while displacement is an output variable of the model.

Already some insight may be obtained from Figure 5.5. For example, there is a
large unoccupied area of the plot at lower length and beam values. In this area the
combinations of length and beam do not produce feasible design points, that is, with
these main dimensions the size of the hull-envelope is insufficient to place all systems
and spaces while meeting the basic non-negotiable constraints (see Section 6.3.2).
This type of insight is useful to check the validity of the set variable bounds (e.g., are
the bounds too tight or loose?).

To explore the influence of design criteria on the technical characteristics of the
plot in Figure 5.5 the following (semi-automated) process is used:

1. Choose several relevant characteristics based on the type of exploration being
performed. For example: technical characteristics such as displacement, length,
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Figure 5.5: 2D scatter plots of ship characteristics length versus beam (left) and
length versus displacement (right). Each dot represents a 3D ship description pro-

duced by the Packing-approach ship synthesis model.

or enclosed volume; or monetary characteristics such as procurement cost. This
provides the naval architect with a reference frame to which the impact of
criteria changes and design choices can be checked (Zandstra et al., 2015).

2. Plot all designs with respect to the chosen relevant characteristics (Figure 5.5).
3. Find the feasible set of design points for the criterion and identify the regional

Pareto-based boundary of this set of points (Figure 5.6a). A convex hull rep-
resentation of the set boundary was also considered, however this could not
reveal the concave nature of some of the feasible sets (e.g., see the right plot in
Figure 5.6a).

4. Repeat steps 2 and 3 for multiple criteria (Figure 5.6b)

This process can be repeated for any number of criteria but also for any number of
different 2D scatter plots (although the number is ultimately limited by a humans
ability to differentiate the data). Hence, the designer is free in choosing different
combinations of relevant characteristics to investigate possible design impacts caused
by criteria. For example, one could investigate the influence of several criteria on
length, displacement, and cost simultaneously. In which case three scatter plots can
be used to cover all options: cost and length, cost and displacement, and length and
displacement (for more examples refer to the test-cases in Chapter 7).

The individual and combined criteria bounds offer several relevant insights.

• They depict the extents of the feasible area for the current criterion (or set
of criteria). Consider the example of Figure 5.6a, where the boundary of the
criterion GM ≥ 1.0m is plotted. Designs with a beam lower than 14 meters
will not meet the GM limit. Naturally, not all designs with a higher beam
meet the stability criterion, because there are other varying characteristics not
shown here (e.g., a general arrangement with high vertical centre of gravity). In
addition, since the bounds for each criteria are maintained and overlaid within
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the current plots, they also provide a means of tracking which criteria cut-off
what parts of the solution space (e.g., this was also an important consideration
for the use of selection polygons in the approach of van Oers and Hopman,
2012).

• The location and shape of the criteria boundaries indicate in which “direction”
each boundary is likely to change when its criterion is changed. For example,
consider the GM boundary in the left plot of Figure 5.6a. Several things are
expected to happen when the required GM is relaxed:

1. Based on the type of criterion (in this case ≥), and the observation that
a part of the design space is cut-off by the GM boundary, a relaxation is
expected to shift the boundary downwards (and vice-versa when a higher
GM is required).

2. Our engineering judgement indeed confirms that relaxing GM should allow
narrower vessels.

3. A 3D version of the plot further confirms this expected behaviour (Fig-
ure 5.7).

4. By actually changing the GM criterion and reviewing the plots we confirm
that the change is as was expected from the insight above (Figure 5.8).

Similarly, we elucidate that the range boundary in Figure 5.6b should move up-
wards towards higher beams when relaxed, and that the displacement boundary
should move to the upper-right with higher length and beam values when re-
laxed.

• By comparing the directions in which different criteria are “moving,” it is pos-
sible to identify opposing and/or conflicting criteria. For example, in Figure 5.6b
the GM and Range criteria are opposing. That is, designs with a higher range
likely have a lower GM because of a lower beam, and vice-versa. This also
indicates, which criteria might need to be changed to maintain feasibility. By
interactively “playing around” with the different criteria and their values (Fig-
ure 5.8), a designer can quickly identify such conflicts, and the possible options
available to solve the conflict (e.g., which criterion to relax).

5.3.2 Exploring interactions and conflicts

For a numerical characteristic and its accompanying criterion, the designs which meet
the criterion is defined as the set of designs r. Hence, the feasible set of designs for
the combination of any number of numerical criteria may be defined as:

R =

n⋂
i=1

ri (5.1)

whereR denotes the set of designs meeting all numerical criteria ri with i = (1, 2, . . . , n).
This is the feasible set of designs shown in Figure 5.6b. However, due to interactions
between criteria, often the feasible set R does not exist. In this case interactions and
conflicts between criteria must be identified and explored.
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(b) Multiple criteria boundaries

Figure 5.6: Visualising numerical design characteristics and criteria

It was mentioned that interactively changing criteria values can provide insight
into which “direction” their bounds are likely to shift. For example, by relaxing a
criterion until a feasible combined set R is obtained may identify the need for altering
one or more criteria. However, this simple method does not help in identifying which
criteria are actually interacting with one-another in the case of a conflict.

First, consider the different types of conflicts which may occur between criteria.
These are shown in Figure 5.9, where individual criteria are represented as a paramet-
ric solutions space (refer to Burcher and Rydill, 1994). The different types of conflicts
that can occur are:

• First, a conflict between one and all other criteria. That is, all but one criteria
form a feasible set (Figure 5.9b).
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Figure 5.7: 3D representation of how a criterion boundary is obtained using a
Pareto-front approach on the feasible set (GM ≥ 1.0m). This type of 3D plot can
be used to visually check the found front and response with respect to the reference

characteristics (e.g., length and beam).

• Second, a conflict between two criteria (Figure 5.9c). That is, there is no feasible
set R, yet all but one of the sub-sets of criteria produce feasible designs (r1 ∩ r2
and r1 ∩ r3). This is the case in the example of Figure 5.8. In this example
the bottom situation (with GM ≥ 1.5m) shows no feasible set, yet both sub-
sets of still produce feasible designs. So, in this case there is a conflict between
Range and GM . This can also be confirmed by the opposing criteria boundaries.
Hence, in resolving this conflict, changing the Displacement criterion will have
no effect, the solution must be sought by either relaxing the required GM or
Range (or by relaxing both).

• Third, a conflict between multiple criteria (Figure 5.9d and 5.9e). Even when all
sub-sets of criteria produce feasible designs there might be no combined feasible
set R. For example, consider a speed, range and payload criteria. Though
the separate combinations of speed and range, speed and payload, and range
and payload are feasible, the overall combination of the three can very well be
infeasible due to the mutual interaction effects of these three ship characteristics
(see Figure 5.9d). In addition, there are also situations in which none of the
criteria overlap (Figure 5.9e). That is, not even the sub-sets of criteria produce
feasible sets.

Although identifying which type of conflict a designer is dealing with is complic-
ated by the interactions between criteria (i.e., changing or removing one criteria can
alter the interactions between other criteria), there is a simple strategy which can help
aid in understanding which type of criteria is encountered. That is, by systematically
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Figure 5.8: Interactively changing the GM criteria; GM ≥ 0.5m (top), GM ≥ 1.0m
(middle), GM ≥ 1.5m (bottom).
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turning-off criteria, while noting the existence of feasible sub-sets of the other criteria,
it is usually possible to quickly identify the interactions.

For example, if no feasible set R exists, and turning-off each individual criterion
does provide a feasible sub-set, then there is a conflict of the type displayed in Fig-
ure 5.9d. This can be written in terms of sets as:

R = r1 ∩ r2 ∩ r3 = ∅ while
r1 ∩ r2 6= ∅
r1 ∩ r3 6= ∅
r2 ∩ r3 6= ∅.

(5.2)

The conflict of the type displayed in Figure 5.9c may be written as:

R = r1 ∩ r2 ∩ r3 = ∅ while
r1 ∩ r2 6= ∅
r1 ∩ r3 6= ∅
r2 ∩ r3 = ∅.

(5.3)

This conflict can also easily be identified by systematically turning-off criteria. That
is, turning-off r3 or r2 does not give an empty sub-set, whereas, turning-off r1 gives
an empty set.

Nonetheless, the explained technique of systematically turning-off individual cri-
teria, though insightful, quickly becomes complicated when the number of criteria is
more than four or five. However, the combination of, (i) the visual aids and insight
provided by individual criteria boundaries with respect to relevant ship characterist-
ics, and (ii) the systematic turning-off of criteria or sets of criteria, provides a tool-set
that the naval architect can use to explore the influence of combining different criteria.
Still, the engineering judgement and expertise of the naval architect must not be un-
derestimated, and is essential in “tying together” (integrating) the various pieces of
information obtained by the exploration methods explained above.

5.4 Exploring architectural characteristics

5.4.1 Visualising architectural characteristics and criteria

Architectural characteristics (e.g., global and relative positions of systems, separation
of systems) and the criteria imposed on them (e.g., position preferences and required
separation between spaces) require a different visualisation approach than numerical
characteristics of a design (van Oers et al., 2008; Duchateau et al., 2013; Pawling
et al., 2014).

Commonly, the positions of systems and spaces within a ship are visualised through
a 2D general arrangement drawing (e.g., mostly using a side-view of the vessel and a
top-view of each deck, see Figure 5.10). However, such representation is very imprac-
tical when attempting to visualise, compare, and explore interactions between, many
different system positions concurrently (Pawling et al., 2014):

• First, the number of general arrangements which can be reviewed and compared
concurrently using traditional visualisation is low. Typically not more than a
few can be compared before the designer will lose the ability to maintain a clear
overview due to the shear amount of information being presented (e.g., consider
comparing more than ten different general arrangement drawings at the level of
detail presented in Figure 5.10).
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Figure 5.9: Feasible or conflicting sets of criteria (ri) represented as a parametric
solution space
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• Second, the amount of information that is being displayed within traditional
general arrangement drawings is too high. That is, all systems and spaces are
shown at a high level of detail. A level which is not required for evaluating
the global and relative positions of key systems and spaces. Something which
can simply visualised by a global or relative x, y, and z position of the centroid
of a space (van Oers et al., 2008). A high level of detail, in this case, is only
distracting.

The problems mentioned above led van Oers et al. (2008) to use a simple 2D side-
view (or top-view) to plot global or relative positions of systems and spaces using only
the x, y and z coordinates of the centroids of each system or space. Figure 5.11 shows
such a reference frame used to plot all the different bridge positions for a set of some
600 designs. Note, the longitudinal axis is made relative to the ships length as this
varies between designs. Also, the constraints applying to the bridge position within
the Packing-approach synthesis model, and the current user selection of preferred
bridge positions, are added. Figure 5.12 shows a similar representation but now with
multiple systems and Figure 5.13 shows the relative separation between two systems.

A side-view plot as in Figure 5.11 and 5.12 already provides various insights to
the user. Comparing the actual positions of the system with respect to its constraints
may indicate that it is being bounded by interactions with other systems or spaces.
For example, see the positions of the generator room in Figure 5.12. This space has
no longitudinal positioning constraints, yet it is bounded aft due to a combination
of hull shape and the presence of a propulsion room (not shown), and it is bounded
forward due to the hull shape and interactions with topside systems (e.g., radar and
bridge) through the intake and exhaust.

Figure 5.14 again shows the available positions for the bridge space, but now with
an added user defined global position preference criterion. Similar to the original
selection approach, the user can draw a selection polygon to express a preference or
criterion for the position of a system. New however, is the ability to alter the selection
by interactively resizing and/or dragging the polygon. This interaction automatically
updates the applied criterion filter sj and thus also the set S (i.e., similar to the
process used for numerical characteristics in Section 5.3).

Figure 5.10: Example of typical 2D side-view general arrangement drawing, taken
from (Goddard et al., 2011)
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Figure 5.14: Available and preferred global positions for the bridge space after the
designer has applied a criterion on the preferred location

5.4.2 Exploring interactions between architectural aspects

There are various options for visualising interactions between architectural aspects.
For example, interactions between longitudinal or vertical positions of multiple sys-
tems can be explored using a matrix-plot representation (Figure 5.15). These plots
are very use-full to quickly identify trends and patterns within the data.

In Figure 5.15, for instance, some interesting trends are displayed. First, there is
a distinct relation between the exhaust and radar. This is caused by a packing rule
(see Section 4.1.1) which states that the exhaust should be placed aft of the radar.
Second, the exhaust and generator room are coupled due to a vertical connection.
That is, the exhaust is should always be connected to the generator room through
a vertical connection object (see Section 4.1.1). The two distinct lines are caused by
the exhaust being placed at either the aft or forward bulkhead of the generator room.
Finally, the two explained direct linkages cause an indirect interaction between the
longitudinal position of the generator room and radar.

The identified interaction explored above are not directly apparent from the plot
of the same systems (i.e., radar, exhaust, and generator room) shown earlier in Fig-
ure 5.12. Although this plot does gives a familiar spatial representation of where the
systems are with respect to the hull, it does not easily allow the extraction of interac-
tions between systems. If the familiar spatial representation is to be maintained, then
there is need for a different method of exploring the interactions between locations of
multiple systems. Again filtering based on applied criteria can be used in combination
with the interactive selection preferences from the selection-approach (Figure 5.14).

As with numerical criteria (Section 5.3), the set of designs which meets an archi-
tectural criterion may be defined as s (e.g., the set of designs which complies with the
global position preference expressed in Figure 5.14). Again, any number of architec-
tural criteria can then be combined using:

S =

m⋂
j=1

sj (5.4)

where S denotes the set of designs which meets all expressed architectural criteria sj



EXPLORING SOLUTIONS AND GAINING INSIGHT 77

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

E
xh

au
st

, x
/L

oa
 [−

]

0.2 0.4 0.6 0.8 1
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
ad

ar
, x

/L
oa

 [−
]

Generator room, x/Loa [−]
0.2 0.4 0.6 0.8 1

Exhaust, x/Loa [−]

Figure 5.15: Matrix-plot representation of multiple longitudinal system positions

with j = (1, 2, . . . ,m). The feasible set S can now be used to filter any visualisation
plots with respect to the current set of user-defined criteria.

For example, consider Figure 5.16 which applies an interactive selection criterion
to the radar position and uses the filtering set S to filter available positions of the
exhaust and generator room. Compared to the plot of Figure 5.12, this approach
using dynamic filtering and interactive selection is considered more insightful.

• First, manipulating the selection of preferred radar positions (e.g., moving it
forward or aft) provides insight into interactions with available positions of the
other systems, that is, similarly to the static representation of Figure 5.15. For
example, moving the radar aft reveals that the generator room consequently
also must be placed aft due to the interaction with the exhaust.

• Second, it combines both longitudinal and vertical positioning information.
Hence, interactions between both these properties can be explored concurrently
(e.g., the naval architect might select the top-most aft-most radar positions).
These interaction are much more difficult to explore using two matrix-plots as
in Figure 5.15.
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• Third, this interactive visualisation maintains the familiar spatial reference
frame of a 2D side-view general arrangement plot which allows a naval archi-
tect to better apply engineering judgement while elucidating interactions and
expressing preferences for global systems positions (van Oers et al., 2008).

Similar filtering can be used in visualising interaction in multiple plots. Thus, a relative
position plot can be linked through data filters to a global positioning plot which
allows the user to explore interactions between different architectural properties.
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Figure 5.16: Interactions between different global position preferences for the radar
and resulting, still available, global positions for the exhaust and generator room

5.5 Linking numerical and architectural character-
istics

Section 5.3 and 5.4 have shown how the selection approach can be adapted to inter-
actively explore interaction between either numerical or architectural characteristics
and the criteria imposed on them. This section combines the developed techniques
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to link the visualisation of numerical and architectural aspects while maintaining the
the insightful user interaction and filtering presented earlier.

First, the filter sets defined in Equations (5.1) and (5.4) are combined to create a
filter for the overall feasible set of designs F . That is, the set of designs which meet
all user-defined numerical and architectural criteria r or s:

F = R ∩ S (5.5)

Now, the sets R,S, and F can be used to filter mutual interaction between numerical
and architectural aspects (see Figure 5.17).

R SF

O

Figure 5.17: Set of all designs O, design feasible with respect to numerical criteria
R, designs feasible with respect to architectural criteria S, and feasible combinations

of F = R ∩ S.

Figure 5.18 illustrates how a criterion applied to an architectural characteristic
(i.e., a preferred location for the bridge) can affect both other systems positions, as
well as numerical characteristics. The opposite is also possible. Figure 5.19 shows how
changing a numerical criterion (i.e., the required value for GM) affects the available
global positions of the bridge and working deck. Finally the combination allows a de-
signer to link criteria (i.e., for numerical and architectural aspects) and the resulting
design solutions (e.g., what the resulting solution looks like). This mutual interac-
tion is shown in Figure 5.20. It is either possible to start with identifying required
performance criteria and then checking the available solutions in terms of layout and
systems, or to start with a preferred set of systems and accompanying layout and
then check attainable performance.

5.6 Discussion and closure

The chapter started with a list of tasks which were considered important for gain-
ing relevant insight from concept exploration to aid requirements elucidation (Sec-
tion 2.3). These tasks included: (i) linking criteria and solutions, (ii) identifying con-
flicts between criteria, (iii) identifying how to resolve or avoid those conflicts, and
(iv) identify why they occur. These tasks, due to the implicit and complex nature
of the interrelations between criteria, can only be accomplished by visually exploring
concept designs and their accompanying characteristics and criteria. To this extent,
several interactive visualisation methods were developed to aid designers in identifying
relevant insights.
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Figure 5.18: Interactions between the selection of a preferred bridge position and
attainable numerical characteristics of displacement and GM

Sections 5.3, 5.4, and 5.5 showed how visual aids (e.g., dynamic set-based filtering,
data brushing, criteria bounds) aid in linking individual criteria to attainable solutions
(task 1). The criteria boundaries and filtering provide a visual aid to identify the
existence of possible conflicts between criteria, and how these might be resolved (task
2 and 3). Finally, because the resulting design concepts are readily available to the
naval architect (e.g., as a full 3D ship description backed up with detailed naval
architecture analysis) a designer can apply expertise and engineering judgement to
interpret why criteria conflict (task 4).

Nonetheless, exploring design solutions is still an involved task where knowledge
of the underlying synthesis model together with its assumptions and limitations is re-
quired. Also, since the set of designs is always limited (e.g., compared to the number of
theoretically possible solutions), some care must be taken when drawing conclusions.
Conflicts may exist simply because designs which might disprove the conflict have
not yet been explored. However, in such cases the interactive progressive approach
can help. The identified criteria can be used to focus design generation towards more
relevant areas of the design space in search of the actual criteria boundaries (e.g., to
test if they are still true). This interactive steering of the synthesis tool based on the
identified insight and criteria is the subject of the next chapter.
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Figure 5.19: Interactions between a changing performance criterion (GM) and res-
ulting attainable system positions
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Figure 5.20: Mutual interactions between numerical criteria and bridge position
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Chapter 6

Guiding the exploration effort

“The naval architect does not start with a preconceived
idea of what is ‘right’ and then fit his design into it.”

– David Brown (1991)

This chapter covers the final step of the interactive steering approach described in
Chapter 3 and Figure 3.2, that is, the task of steering the concept exploration effort
towards desired design solutions. The main input for this step was uncovered by
the designer while interactively exploring the solution properties of the preceding
iteration, i.e., through design insight (Chapter 5). First, how this new knowledge can
be used to steer the process is covered. Next, the merits of several steering mechanisms
are explored. Finally, a suitable steering mechanism is chosen, developed, tested,
and implemented in the overall interactive concept exploration process described in
Chapter 3.

This chapter is based on work published by the author in Pawling et al. (2014)
and Duchateau et al. (2015).

6.1 From design insight to controlled steering

Chapter 5 elaborated on how various insights could be gained from exploring a large
set of diverse design solutions (i.e., concept exploration). Chapter 3 explained that
insight (and the understanding it provides the naval architect) may be used to adjust,
expand, or reduce a continuously evolving set of design criteria. Criteria which, in
turn, allow the naval architect to steer the “direction” of further exploration efforts.
However, this implies that the synthesis model, and how this model generates designs,
should respond to changes to those criteria. Hence, the main question regarding this
chapter becomes:

How to use the set of adjusted criteria from the exploration effort to guide a
(optimisation-based) ship synthesis model in the search for new and more relevant

designs?

83
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6.2 Steering methods

The basic Packing-approach process (repeated here in Figure 6.1) contains several
information flows that can be used to include new insights, in the form of a set of
criteria, to steer the synthesis model. These are (also highlighted in Figure 6.1):

1. Packing-rules (synthesis model constraints)
2. Search algorithm constraints
3. Search algorithm objectives

The other Packing-approach inputs are: the list of building blocks (i.e., the compon-
ents and spaces of the MCMV model, see Appendix A), and the initial input variables
to start the first population of the genetic algorithm.

The initial input variables (i.e., first genetic algorithm population) cannot be used
to directly steer the approach based on new criteria. However, the initial population
can be adjusted to a suitable starting point in subsequent iterations of the interactive
exploration process. Hence, desirable designs from the previous exploration run(s)
can provide an initial starting point for the next run.

Technically, also the building blocks could be adapted and adjusted based on
insight gained during the interactive exploration process. However, as was discussed
in Chapter 4, the technical implementation of Packing (i.e., the way building blocks
are described and sequentially packed) currently limits the possibility for adding new
building blocks (e.g., systems and spaces) later on. The other possibilities of steering,
that is, (i) with the use of packing-rules, (ii) using search algorithm constraints, or
(iii) using search algorithm objectives, are described in more detail below.

6.2.1 Packing-rules (synthesis model constraints)

Packing-rules determine how the Packing-approach places individual building blocks
(e.g., spaces and systems) within the positioning space. Packing-rules allow the fol-
lowing aspects of systems and space positioning to be controlled:

• Global positioning, that is, the position constraints of objects relative to a fixed
point of the hull (e.g., the aft-most point at the base-line is considered the
zero-point in Packing). For example, the bridge might be restricted horizontally
between 50 − 80% of the overall length, while an engine room compartment is
often vertically restricted to a certain deck number.

• Relative positioning, that is, the positioning constraints of objects relative to
each other. For example, a helicopter landing platform can be restricted to the
same deck as the helicopter hangar. Generally this constraint is in the form of:

System A must be on the same deck as System B (6.1)

• Adjacency or separation, that is, in either absolute distance (e.g., meters sep-
aration) or number of compartments1. For example, for vulnerability reasons

1A compartment is defined as the space between two consecutive bulkheads and decks
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Figure 6.1: Packing-approach process and highlighted inputs that can be used to
control the generation of design solutions

it could be chosen to separate the main engine room from the diesel generator
room by at least a compartment. Other examples are:

System A must be separated by 2 compartments from System B
System C must be within 10m of System D

(6.2)

• Connectivity, that is, connections between objects. Examples are: up-takes,
down-takes, access shafts, and elevators or lifts.

• Free-space, that is, space surrounding certain systems which may not be occu-
pied by other objects. Examples are, a helicopter landing platform requiring
free-space to ensure a safe flight approach, or a combat system requiring a free
line-of-sight to operate (e.g., naval gun or radar system).

Together, the above Packing-rules offer a great amount of control in how systems
and spaces are placed in the synthesis model, that is, the architectural aspects of the
design problem.

6.2.2 Search algorithm constraints and objectives

Although, in principal, the naval architect is free to choose the search algorithm
constraints and objectives, various studies have shown that it is practical to use
a default problem set-up which combines non-negotiable constraints and a simple
objective (e.g., Wagner et al., 2010a; van Bruinessen, 2010; van Oers, 2011b; DeNucci,
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2012; Zandstra, 2014). This default problem definition used within Packing’s search
algorithm is as follows:

min
x

f −PD(x)

s.t. h1 systemsplaced(x) = systemstotal(x)

g1 T (x) ≤ Tdes(x)
g2 ‖LCB(x)− LCG(x)‖ ≤ δreq
g3 GM(x) ≥ GMreq

x ≤ x ≤ x

(6.3)

where the negative of packing density PD of a design is minimised2 in the single
objective function f . This ensures that the Packing-approach searches for compact
designs. The equality constraint h1 states that all systems must be packed. The other
constraints safeguard several non-negotiable requirements such as, buoyancy g1, trim
g2, and initial intact stability g3.

In addition, g1 ensures a design will meet its required speed and range. This is
because the estimates for required propulsion power and fuel capacity are made at
the design draft Tdes. Thus, if the final draft T is smaller than or equal to the design
draft (i.e., the draft at which resistance is estimated) we assume that the required
propulsion power will be lower and thus that the design has sufficient installed power
and fuel to meet its required speed and transit range.

6.3 Issues with steering methods

The steering methods of Section 6.2 have several drawbacks which limit their applic-
ability within the proposed interactive approach. The drawbacks of each method are
covered below. Next, based on these drawbacks, a new steering method is proposed
and developed in Section 6.4.

6.3.1 Packing-rules

The Packing-approach uses packing-rules to control the placement of systems through
positioning constraints and logical relations. However, the use of these packing-rules
may result in different outcomes. Within the parametric design model created in the
Packing-approach, finding a correct balance of the number and type of constraints
and/or logical relations versus the desired diversity of the resulting solutions, is not
an easy task. This issue was demonstrated through various projects undertaken with
the Packing-approach:

• First, Wagner (2009); Wagner et al. (2010a) used the Packing-approach to ex-
amine different layout possibilities for a deep-water drillship. Wagner showed
that, depending on the number of used positioning constraints, the diversity of

2Hence, the use of a minus in the objective function to maximise.
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the resulting solutions within the design space can vary considerably. In addi-
tion, there is a high chance of over-constraining the model, which would result
in only a limited exploration.

• Van Bruinessen (2010), contrary to Wagner, used a limited number of con-
straints to develop a model for a coast-guard cutter. This resulted in very
diverse design solutions covering a broad area of the design space. However,
many designs needed to be filtered from the design space due to undesirable
and impractical arrangements. Relational packing-rules could fix these prob-
lems as they allow control over relative system positions without limiting their
global placement on the design.

• Zandstra (2014) went one step further and used logical system properties and
dependencies to develop a generic set of constraints, which dynamically adapt to
the presence of systems within the design. This constraining method reduces the
chance of over-constraining while maintaining an acceptable level of constraints
ensuring a logical and practical layout of the ship. However, its steering ability is
still limited to the correct and logical placement of systems and not to desired
whole ship performance. Moreover, setting up the dynamic constraints is an
involved task, especially for a design model which has many varying design
options.

• Baudeweyn (2014) demonstrated that the use of positioning constraints on the
deck-layout of a Floating Production Storage and Offloading vessel (FPSO) lim-
ited the broadness and diversity of the resulting design space. These constraints
were traditionally used to ease the tedious task of manually creating a safe and
feasible deck-layout. However, by changing these constraints into more flexible
objective functions (that are then used in the Packing-approach search process)
Baudeweyn illustrated that relaxing these positioning constraints was actually
beneficial for several relevant design characteristics (e.g., overall safety level,
overall required deck space, and gross amount of piping).

To summarise their findings, when using packing-rules, a designer should avoid us-
ing hard positioning constraints as these limit design solution diversity. Instead,
logical relations should be used to incorporate arrangement rationales in the para-
metric model (DeNucci, 2012). Zandstra (2014) applies dynamic constraints, while
Baudeweyn (2014) removes layout constraints altogether and applies more flexible
objective functions to maintain diversity.

Still, packing-rules must currently be provided a-priori when developing the para-
metric ship description. This requires considerable effort and expertise, and there is
a high risk of over-constraining and premature convergence. As such, they may un-
intentionally limit concept exploration. Moreover, packing-rules are also hard-coded
into the synthesis model. Thus, when the Packing-algorithm cannot satisfy these
rules, the design fails to pack and consequently will not meet the default search al-
gorithm constraints of (6.3). This reduces the performance of the search algorithm,
because more designs within each population can become infeasible. Also, valuable
insight about why the design has failed is then lost, which means a trial-and-error
approach is required to find out which packing-rules are causing problems. Because
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of these multiple issues, the use of packing-rules to incorporate new criteria during
exploration is considered unwanted.

6.3.2 Search algorithm constraints

For subsequent exploration runs, new criteria could also be added as additional search
algorithm constraints. That is, for each criterion an additional constraint could be
added to the default Packing-problem defined in (6.3) as follows:

min
x

f −PD(x)

s.t. h1 systemsplaced(x) = systemstotal(x)

g1 T (x) ≤ Tdes(x)
g2 ‖LCB(x)− LCG(x)‖ ≤ δreq
g3 GM(x) ≥ GMreq

g4 Speed(x) ≥ 16kts
g5 Range(x) ≥ 3000nm

(6.4)

where two criteria for a minimum speed (g4) and transit range (g5) are added to the
default problem of (6.3).

In the Packing-approach search algorithm, constraints are normally used to ex-
press non-negotiable requirements which ensure that the designs remain basically
feasible. Hence, constraints are treated as hard within the genetic search algorithm.
That is, not meeting the constraints renders the design infeasible. Thus, when ne-
gotiable criteria are added as additional search algorithm constraints, they become
non-negotiable (hard). Hence, they must all be satisfied for a design to be deemed
feasible by the search algorithm. This makes identifying conflicts between negotiable
criteria more difficult as designs with conflicts between criteria are more likely to be
discarded during the optimisation. Furthermore, the genetic search algorithm is then
challenged by a large number of infeasible solutions in each generation, hampering
the search for better feasible options.

Take Equation (6.4) where two criteria (speed and range) are added as constraints
to the search algorithm. This means both the speed and the range criterion must be
met to make a design feasible from the genetic algorithm’s point of view. If this turns
out to be impossible, due to a conflict between these two aspects, zero feasible designs
will be generated and found by the Packing-approach (even though a designer might
still be satisfied with a solutions which lies close to the desired criteria values). With
multiple constraints it is also difficult to trace-back the conflicting criteria, as any
combination of the constraints might have caused the original conflict.

6.3.3 Search algorithm objectives

New criteria could also be added as additional objective functions. For example one
could add stability and range criteria as two additional objectives as follows:

F (x) = −

 PD(x)
GM(x)

Range(x)

 (6.5)
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where de default single-objective function f(x) = −PD(x) is changed to a multi-
objective function maximising stability (GM) and (fuel) range as well. However,
this multi-objective function may include individual objectives, each with different
sensitivities toward the used input variables x.

For example, for mono-hull vessels, GM (through BM = It/∇) is roughly propor-
tional to the beam squared B2, whereas the range (through resistance) is inversely
proportional to beam through the length to beam ratio L/B. Hence, as beam is an
input variable to the Packing-approach, the search algorithm will put more emphasis
on the GM objective favouring beamy vessels over long and slender vessels. This
ultimately results in an uneven search of the design space. The described behaviour
of sensitive objective functions may be avoided, but only if these possible sensitivity
issues are known to the designer a-priori.

Moreover, adding a large number of criteria as individual objectives can be prob-
lematic for the optimisation algorithm. The NSGA-II algorithm which is used in
the Packing-approach applies non-dominated sorting of individual design solutions to
guide the optimisation (Deb et al., 2002). When multiple objective are defined, this
particular sorting method results in a loss of performance of the genetic algorithm due
to a decrease in probability of having multiple Pareto-fronts. Various studies show
this can be partially solved by changing the sorting method of the NSGA-II algorithm
(e.g., Köppen and Yoshida, 2007). However, if a large number of objectives can be
averted, for example by aggregating criteria into one or a few objectives functions,
then this is a favourable solution.

Contrary to packing-rules and search algorithm constraints, objectives have no
problems with possible conflicts between identified criteria. Within an objective,
individual criteria are treated as nice-to-have properties. Hence, a design will never
become infeasible if it cannot meet the criteria. Instead, it will simply be treated as
more or less desirable by the search algorithm. Because not all interactions between
criteria are known up-front, an objective method seems well suited for application in
the proposed mechanism to feed insight gained during the exploration effort back into
the generation process.

6.3.4 Summary of steering issues

To summarize, the Packing-approach provides several mechanisms to include new
adjusted criteria necessary to create a progressive design approach: (i) packing-rules,
(ii) constraints, or (iii) objectives. However, both packing-rules and search algorithm
constraints are used in such a way that they are deemed unsuitable or impractical for
use as a steering mechanism in a progressive design approach.

Packing-rules tend to over-constrain the parametric model of the ship design,
which results in less diversity in the resulting design set and thus provides only a
limited exploration of the design space. They also require a large a-priori effort to
set-up. Most importantly, packing-rules are dealt with as non-negotiable constraints,
which means they must be fulfilled during the packing process in order for a design
to be generated successfully. Hence, a trade-off of conflicting criteria will not be
generated or identified.

Search algorithm constraints are used to express non-negotiable criteria. This
means they cannot be used to express negotiable criteria (e.g., which might require a
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trade-off). A conflict between two negotiable criteria will thus indicate that the design
does not meet the constraints, which in turn results in an infeasible and discarded
design from the search algorithm’s point of view.

Finally, search algorithm objectives seem the most promising steering mechanism.
However, as discussed in Section 6.3.3 and in Chapter 2, they cannot be used without
modification. Instead, a new type of multi-objective steering function must be de-
veloped. That is, one where the separate objectives are less sensitive towards the
input variables, and which can easily adapt to varying numbers and types of criteria
(e.g., criteria on layout, systems, technical characteristics, as well as performance).

6.4 Objective-based steering

Considering the issues of the constraint or Packing-rule based steering mechanisms,
the objective-based mechanism is favourable. However, several aspects must be con-
sidered and dealt with before a suitable steering objective can be developed and
implemented in the overall interactive approach:

• First, the steering objective function should provide the search algorithm with
enough incentive to actually search for and generate relevant and more desirable
designs during design exploration. That is, a design which meets the adjusted
criteria as identified from design space exploration. Hence, the objective func-
tion should target for designs which meet all, or as many as possible, of the
identified criteria. It is then possible to check whether indeed the identified
criteria and resulting solutions are balanced.

• Second, the objective must be robust. Typically an objective function is highly
tailored to its optimisation problem, however, for use in the interactive approach
it must cope with both varying number and types of criteria. At the start of
design exploration the number of criteria is typically low, but this will likely
increase as the exploration progresses. In addition, the objective must be suffi-
ciently robust to deal with various types of criteria. For example, the objective
might include simple criteria such as transit range or speed requirements, or
more complex criteria depicting a required relative layout of two systems.

• Third, the objective should promote compromise designs, that is, designs which
almost meet the criteria, or which meet a subset of the identified criteria. If,
for any reason, not all criteria can be met, then these compromise designs will
contain valuable information for the designer on why these criteria were not met.
For example, the designer may have defined two criteria which conflict and over-
constrain the problem. However, a slight change to one of the criteria would
have produced a feasible solution. In such an event, compromise designs reveal
what trade-off options are available, allowing the naval architect to evaluate and
choose the most desirable option.

The above aspects led to the development of two different multi-objective steering
functions that use the adjusted and/or expanded criteria. That is, the criteria which
originate from step 3 and 4 of the interactive approach in Figure 3.2. These criteria
provide the search algorithm with a description of the, at that moment, desirable
properties of a design.
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It was chosen to group the identified criteria into two distinct categories. The
first category (r) includes numerical performance criteria, and the second category
(s) includes system and arrangement criteria. This grouping is identical to that of
the exploration filtering sets (see Chapter 5). Examples of these criteria groups are
shown in (6.13). The reasons for this grouping are twofold:

1. It allows criteria to easily be aggregated into groups of individual objectives
to mitigate the effects of using a large number of objectives (e.g., as was ex-
plained in Section 6.3.3 about the possible issues when using search algorithm
objectives). Note, in Chapter 2 a-priori aggregation of objectives was considered
as unwanted. However, we are now dealing with progressively (and thus not
a-priori) defined criteria. Hence, the criteria represent what we are actively
searching for, not what we think we are searching for.

2. Grouping numerical and architectural aspects also fits the two types of char-
acteristics distinguished during the exploration step in Chapter 5. Hence, any
filtering criteria applied and deemed as desirable from design exploration are
easily transformed into different steering criteria that can be used for objective-
based steering.

Based on this grouping two objective steering function were developed. Each is de-
scribed below.

The first proposed multi-objective steering function is as follows:

F (x) = −
[
PD(x)
C(x)

]
(6.6)

where the first objective attempts to maximise the packing density PD(x) of each
design, while the second objective C(x) maximises the fraction of criteria met by each
design. C(x) is further defined as follows:

C(x) =
1

2

 1

n

n∑
i=1

ri(x) +
1

m

m∑
j=1

sj(x)

 (6.7)

where ri(x) is the utility score of each performance related criterion based on the
utility function shown in Figure 6.2, and where sj(x) is the utility score for each
system related criterion. The default utility score for system criteria is defined as:

sj(x) =

{
1 if system criterion met,
0 otherwise.

(6.8)

The second proposed multi-objective steering function is defined as follows:

F (x) = −

PD(x)
R(x)
S(x)

 (6.9)

where the first objective is equal to (6.6), the second objective R(x) maximises the
fraction of performance criteria met, and the third objective S(x) maximises the
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fraction of system criteria met. R(x) and S(x) are further defined as:

R(x) =
1

n

n∑
i=1

ri(x) (6.10)

S(x) =
1

m

m∑
j=1

sj(x) (6.11)

in which ri(x) and sj(x) are equal to the utility functions used in equation (6.6).
The first multi-objective steering function (6.6) combines performance and system

criteria into one single objective C(x), whereas in the second proposed steering func-
tion (6.9), they are kept separate as R(x) and S(x). This separation was deliberately
introduced to help investigate possible conflicts and trade-offs between performance
and system criteria. The second proposed function should allow the search algorithm
to better focus on a Pareto-front should a conflict between R(x) and S(x) exist.
When the number of performance criteria n and system criteria m show a large dif-
ference, then simply summing and averaging all criteria would give an unbalanced
contribution. Hence, in equation (6.6) an equal weighting is given to meeting either
performance or system related criteria.

The aspect of robustness and the issues regarding sensitivity towards input vari-
ables are partially resolved by using the fraction of criteria met (R(x), S(x) and
C(x)) within the objective function, as opposed to the actual performance aspects
as in (6.5). Hence, a single criterion cannot drive the entire optimisation, instead the
impact of each criterion is considered more equally. Also, the criteria are not defined
as hard, that is, if a design cannot meet all criteria it is simply less attractive for the
search algorithm but it will never be labelled as infeasible, as was the case when using
search algorithm constraints.

The customizable utility functions (Figure 6.2) give some flexibility to make sure
that designs which almost meet a criterion are rated higher by the search algorithm.
For example, in Figure 6.2 a 10% margin of the required criteria value is used. Similar
margins can also be defined for the global and relative position criteria of systems
and spaces (e.g., a margin on the preferred position bounds). This can prove useful
when studying the influence of slight changes in a criterion or when assessing trade-offs
between different criteria. It can also be argued that the shape of the utility functions
may be changed to accommodate the level of uncertainty related to a particular re-
quirement given the maturity of the design problem. In addition, the utility functions
also help the search algorithm by making the objective function less discrete.

6.5 Steering test-case

This test-case investigates whether the developed objective-based steering mechan-
isms, with user added criteria, helps the Packing-approach to search for more, and
more relevant, design solutions. To do so, first a simplified model of a mine counter-
measures vessel (MCMV) with 45 building blocks representing various systems and
spaces was used. The number of search algorithm constraints and Packing-rules was
kept to a minimum to make sure that diverse design solutions could be generated.
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Figure 6.2: Utility functions used to determine the objective contribution ri of
each identified performance aspect and its criterion, where vi/vi,req is the ratio of the

current and required value of criterion i.

6.5.1 Set-up

The Packing problem definition was set-up according to (6.12) where the default
problem definition of (6.3) is adjusted with a minimum required GM of 0.5m and a
maximum LCB and LCG separation of 2m.

min
x

f −PD(x)

s.t. h1 systemsplaced(x) = systemstotal(x)

g1 T (x) ≤ Tdes(x)
g2 ‖LCB(x)− LCG(x)‖ ≤ 2m
g3 GM(x) ≥ 0.5m

(6.12)

By exploring an initial set of designs which was generated before the test-case was
started, seven relevant criteria were identified. Three performance related criteria,
and four related to systems and arrangement. These were chosen such that, when
combined, they are not easily met. This was done to increase the challenge for the
search algorithm and to study the ability of both proposed steering objectives to
find compromise design solutions (i.e., that meet a sub-set of the seven criteria). The
criteria were used to simulate the addition of new criteria in the steering test-case.
They are defined as follows:

r1 Displacement ≤ 1200m3

r2 GM ≥ 1.2m
r3 Speed(max) ≥ 16kts

s1 # of USV = 2
s2 # of Main Gun = 1
s3 Global position of Bridge
s4 Propulsion Room separated by ≥ 1

compartment from Generator Room,

(6.13)

where ri represent three performance related criteria, and sj represent four system
related criteria. The global position preference criterion for the Bridge (s3) is shown in
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Figure 6.3. A USV is a large manned or unmanned surface vehicle which can perform
various mine-counter measure (MCM) tasks, it is deployed from the main deck with
the help of a dedicated launch and recovery system.

The testing procedure comprised the following three steps:

1. Generate one set of designs with no steering and no criteria (e.g., to serve as a
benchmark).

2. Generate one set of designs using the combined steering objective of (6.6) and
the criteria of (6.13).

3. Generate one set of designs using the separated steering objective of (6.9) and
the criteria of (6.13).

This procedure was repeated 10 times to mitigate the “random” effects introduced by
the search algorithm’s genetic operations (e.g., cross-over, mutation, and selection).
A population size of 64 designs was evolved over 100 generations. Thus, including the
initial population, 6464 designs were attempted per set.
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Figure 6.3: Preferred global position criterion of the Bridge (s3). The blue rectangle
represents the desired position bounds with respect to the hull (grey). The darker

points represent solutions that comply with the criterion.

6.5.2 Results

The initial test runs with no steering produced, on average, 1395 unique3 designs in a
set that meet the basic constraints of (6.3). When steering was applied, the number
of unique designs increased to 1889 with combined steering and 2043 with separated
steering, an increase of 35% and 46% respectively (Table 6.1). In addition, with no
steering, zero designs that meet all of the defined criteria where found. With steering
on, an average of 20 feasible designs were found in each set.

The use of steering has a profound effect on the percentage of designs that meet at
least a number of criteria (Table 6.2 and Figure 6.5). On average, a set generated with

3There is a check for unique designs within each set. Duplicate designs are removed from the set
as these do not offer additional information for the designer.
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Table 6.1: Average number of feasible designs per set (10 runs per objective)

Steering OFF
(benchmark)

Steering ON
combined

Steering ON
separated

attempted 6464 6464 6464
meet constraints 1395 (21.6%) 1889 (29.2%) 2043 (31.6%)
meet all criteria 0 16 24

steering contains more feasible designs compared to a set with no steering, regardless
of how many criteria are met. Additionally, the tests with steering contain designs
which meet all seven criteria of (6.13), as opposed to tests without steering which
failed to produce designs that meet more than five criteria (Table 6.2). Three randomly
picked designs which meet all identified criteria are shown in Figure 6.4.

Figure 6.4: Three randomly picked MCMV concepts which meet all criteria. Al-
though these designs meet the same criteria, the concepts still have different layouts.

Combining or separating criteria within the steering objective function does not
show a large difference on the number of feasible designs in a set (Table 6.2). For
example, if at least six criteria are to be met; the combined objective steering method
(6.6) produced 2.1% feasible designs within the set, whereas the separated objective
(6.9) found 2.6% feasible. For at least four criteria the combined objective found
17.0% feasible designs, whereas the separated objective found 18.7% feasible.

Table 6.2: Average percentage of designs per set that meet the criteria of (6.13),
out of a total number of 6464 design per set (10 runs per objective)

# criteria
met k

Steering OFF
benchmark [%]

Steering ON
combined [%]

Steering ON
separated [%]

1 21.1 29.1 31.5
2 16.6 28.4 30.7
3 9.7 24.8 27.2
4 4.1 17.0 18.7
5 0.4 8.4 8.47
6 - 2.1 2.6
7 - 0.3 0.4
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Figure 6.5: Average percentage of designs per set that meet the criteria of (6.13),
out of a total number of 6464 designs per set (10 runs per objective)

Although the results of Figure 6.5 show that both proposed steering objectives
were able to find more designs that meet (a subset of) the criteria, it does not show how
many different trade-off combinations of criteria were found. For example, consider
that there are

(
7
3

)
= 35 possible ways of meeting three out of the total of seven

criteria. It could be that the steering objectives only managed to find one of those
possible combinations. However, when considering trade-offs, all combinations could
be interesting options. Hence, the number of combinations of criteria found must also
be considered in determining the performance of the steering objective functions.

There are
(
m+n
k

)
possible combinations for meeting exactly k criteria out of the

total number of performance and system criteria m+n. Hence, for meeting k or more
criteria the number of possible combination can be written as:

m+n∑
l=k

(
m+ n

l

)
(6.14)

For a total number of seven criteria the theoretically possible number of combinations
are shown in Table 6.3.

Lets consider an example, Figure 6.5 showed that both steering objectives found
roughly 18% feasible design per set that meet four or more criteria. Using (6.14) it
can be calculated that there are 64 possible ways of meeting four or more criteria.
Table 6.3 and Figure 6.6 shows, on average, what number and percentage of those 64
possible combinations was found in each set of designs. When no steering is applied, on
average only 13.2 (12%) of the 64 combinations were identified. Combined steering
managed to find 42.1 (61%) combinations, whereas separated steering found 50.6
(79%) combinations. Of the overall 128 possible combinations of criteria, no steering
found 55.2 (43%), combined steering found 90.6 (71%), and separated steering found
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Table 6.3: Possible and average found number of combinations for meeting k or
more criteria (10 runs per objective)

# criteria
met k

Possible
comb. to
meet k

Possible
comb. to
meet k or

more

Steering
OFF

benchmark

Steering
ON

combined

Steering
ON

separated

0 1 128 55.2 90.6 105.6
1 7 127 54.2 89.7 104.6
2 21 120 47.7 83.2 98.1
3 35 99 31.9 66.6 79.5
4 35 64 13.2 42.1 50.6
5 21 29 3.4 17.8 22.8
6 7 8 0.2 4.4 6.6
7 1 1 - 0.6 1

105.6 (83%). Hence, it may be concluded that the separated steering function was
able to find not only slightly more designs, but also more designs which represent
different trade-off combinations of the desired criteria.
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Figure 6.6: Average percentage of possible combinations of criteria found within a
set of designs, see Table 6.3 (10 runs per objective).

6.5.3 Discussion

The results show that the objective-based steering mechanisms, when provided with
criteria by the naval architect, can direct the synthesis model towards relevant high
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performance designs deemed of interest. Both proposed steering objectives in (6.6)
and (6.9) significantly increased the number of feasible designs found by the syn-
thesis model. However, the benchmark case without steering naturally should find
less relevant designs as its focus is directed elsewhere (i.e., in this case maximising
the Packing-density of the designs). Nonetheless, without steering still some relevant
solutions meeting several criteria are found. These are most likely criteria which have
a direct relation to the objective Packing-density (e.g., the displacement criterion). In
addition, both steering objectives where capable of identifying compromise designs,
that is, where not all, but a sub-set of, the identified criteria are met. These designs
may be interesting when possible trade-offs occur.

The results indicated that it is challenging to meet all set criteria, hence a constraint-
based steering method would probably fail to find any feasible designs. Although
objective-based steering only produced a small number of feasible designs, it does
provide many compromise alternatives that meet not all, but a subset of the identi-
fied criteria. Compromise solutions which a constraint-based method would simply
fail to identify as these are regarded as infeasible by the search algorithm.

Although, both proposed steering objectives produced an equal number of feasible
designs per set, the separated objective function identifies more designs with different
combinations of criteria. These designs are very useful when examining possible trade-
off options, especially when not all can be met due to the existence of a conflict
between one-or-more criteria. Hence, the separated objective steering function (6.9)
is considered better and should be preferred.

6.6 Conclusions

The main goal of this chapter was to develop a steering mechanism capable of guiding
the Packing approach towards designs deemed as more desirable by the naval architect.
That is, designs that meet criteria identified as desirable by the naval architect during
the interactive design exploration approach presented in Chapter 3.

Three possible steering methods were examined: packing-rules (i.e., constraints
within the synthesis model), search algorithm constraints, and search algorithm ob-
jectives. Objective-based steering was chosen mainly due to its ability to handle
unforeseen conflicts between identified criteria which would otherwise render a design
as infeasible. Two variants of objective-based steering functions were developed and
implemented in the interactive approach. The first variant combines all criteria in
one sub-objective function, whereas the second variant separates the performance and
system/arrangement criteria in two sub-objectives. These variants were then tested
for their ability to direct the synthesis model based on a (simulated) list of identified
and relevant design criteria.

Both objective-based steering variants were successful at guiding the synthesis
model towards more relevant designs that met all identified criteria. The separated
objective mechanisms was, however, able to identify more different combinations of
criteria which is considered a benefit when exploring trade-off options. Hence, the sep-
arated objective is chosen for implementation within the overall interactive approach
of Chapter 3.

Naturally, the possibilities for alternative and more elaborate (objective-based)
steering mechanisms are endless. For example, refer to the various visual steering



GUIDING THE EXPLORATION EFFORT 99

aids developed by Stump et al. (2009) also see Section 5.1. The shape of the applied
utility functions (see Figure 6.2) can also be changed to better suit the needs of
individual criteria. For example, the shape can represent a more elaborate weighting
of an individual criterion. It might even change during the course of the exploration,
based on the changing relevant importance of that criterion.

The author also envisions future possibilities for a hybrid interactive approach
where steering takes place using both objective-based steering mechanisms as well as
synthesis model constraints (e.g., packing-rules). This would allow early and broader
exploration of the design space to be based on objective-based mechanisms, while
later more focussed exploration of small parts of the design space could make use
of the benefits of fixing design options through model constraints. For example, if
through the first few iterations of the progressive approach a certain design option
(e.g., weapon system) has been ruled out, then there is no real benefit in considering it
later in more focussed exploration efforts. In that case it might as well be eliminated
using adjusted model constraints. Even so, it is the naval architect responsibility to
ensure that no design options are constrained prematurely in the exploration.





Chapter 7

Design test-cases

“The purpose of computing is insight not numbers”

– Richard W. Hamming (1962)

Chapters 4-6 have developed the individual steps required to produce the interact-
ive evolutionary concept exploration approach proposed in Chapter 3. This chapter
applies the fully developed approach to a design case to demonstrate how it aids de-
signers during preliminary concept exploration. The specific goals of the design case
are first elaborated before two test-cases are performed and discussed. The chapter
concludes by discussing how the test-case process and results have illustrated the
benefits of the approach.

7.1 Test-case goals

The main research question and objective of this dissertation is (Chapter 1):

How to generate and select the “right” design(s) using insight gained during design
exploration?

As such, the main goal of the design test-cases is to demonstrate how the developed
interactive and progressive design space exploration approach aids the naval architect
in generating and selecting desirable design solutions. Insight which is identified
during the exploration process plays an important role in this. It should aid in
generating and selecting the right design by providing the understanding which is
necessary to identify and balance relevant design criteria.

In Section 2.3 and Chapter 5, it was determined the following tasks are deemed
essential for understanding and gaining this insight:

1. Linking criteria to solutions and vice-versa, i.e., given a set of desired criteria
what potential solutions meet these, or given a prescribed solution what type
performance may be expected.

2. Identify if and when criteria conflict, i.e., this provides feedback on the existence
of trade-offs between criteria.

101
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3. Identify how to avoid or resolve a conflict, i.e., identify which criteria need to
change, and by how much to stay balanced and feasible?

4. Identify why criteria conflict, i.e., to understand the underlying mechanisms
causing these conflicts so they may be avoided and documented for future pro-
jects.

Two individual test-cases are performed to demonstrate the potential of the interactive
concept exploration approach at aiding a designer in performing the above tasks in
search of desirable criteria and accompanying design solutions. Each test-case ends
with a reflection on how it has demonstrated that the approach is capable of aiding
a designer in performing the above tasks.

7.2 Test-case subject

The subject for the test-case is the design of a mine-countermeasures vessel or MCMV.
This design project is currently ongoing at DMO and was initiated to replace the
RNLN Alkmaar Class mine-hunter, which has been in commission since 1983 (Fig-
ure 7.1). Some interesting facts about the MCMV replacement program, which make
it an interesting candidate for the concept exploration test-cases, are listed below.

Figure 7.1: The HNLMS Alkmaar under way, first-of-class of fifteen RNLN “Tri-
partite” class mine-hunters of which six remain in service today (Netherlands Institute

for Military History, 2015)

Operational concepts

Recent advances in the mine-countermeasures community show a shift towards the
heavy use of unmanned systems, launched from a mothership platform, to perform
identification, classification, and disposal of mines (e.g., see Freedberg, 2015). How-
ever, this shift has also brought up discussions about the operational concept(s) of
the new generation of mine-countermeasure vessels. That is, can we rely solely on
unmanned systems, or should manned options stay available (e.g., with the use of
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divers)? Also, is the operation performed at stand-off distance (i.e., with the mother-
ship at a safe distance outside the mine-field) or from within the mine-field (e.g., see
Marineschepen.nl, 2015)?

These different concepts affect both the types of system solutions as well as the
mothership characteristics. For example, operating at stand-off distance can reduce
the need for signature reduction measures, while the increased distance will likely
require more or different unmanned systems to maintain performance. Also, require-
ments such as, the transit speed, range, and propulsion plant concepts, will influence
both the MCM operation and the timely world-wide availability of the vessels cap-
ability. Moreover, although the unmanned systems can be small, their supporting
facilities and required additional crew are not.

The above system options and requirements naturally result in large impacts on
the ship design and its cost. This then leads to a discussion about which operational
concept(s) are wanted and affordable, and using what level of technology? A discussion
which benefits from an integrated concept exploration analysis. Hence, the MCMV
as a test-case subject.

Disclaimer

The work performed as part of the test-cases presented in this chapter were undertaken
in parallel to MCMV procurement studies at the Defence Materiel Organisation. This
had the added benefit of a readily available design model with associated design data,
the ability to cross-check results and analysis, as well as the availability to a dedicated
cost model. However, it must be emphasized that the design model, design
variations, budget, criteria, and choices made in this dissertation do not
reflect the MCMV procurement program at DMO. Both the design and
cost model were altered in such a way that they are realistic, yet not
representative of the actual MCMV procurement project at DMO.

7.3 MCMV packing model

The MCMV packing model initially developed by Zandstra (2014) and Zandstra et al.
(2015) can vary many relevant design characteristics (see Table 7.1 and 7.2). The total
number of possible combinations from the presented variations of MCM and platform
characteristics is 790272. In addition to the main options, the design model also varies:
hull main-dimensions; crew size as a function of weapon/sensor systems and MCM
systems; accommodation size; machinery space size; engine types; and the general
arrangement of systems and spaces. For a more elaborate description of the applied
MCMV packing model, its main assumption, and a brief list of calculation models
used, refer to Appendix A.

The default Packing-approach optimisation problem of Equation (6.3), used in
the genetic search algorithm, is altered according to Equation (7.1) where initially
R(x) = 0 and S(x) = 0 as no performance and system criteria are defined at the
start of the exploration. The required GM is set to a minimum of 0.75m and the
longitudinal separation of the centre of gravity and buoyancy is set to maximum of
2m. Additionally, the user may choose to change the default packing density −PD(x)
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objective to a cost objective Cost(x) if this is more fitting with the exploration’s
purpose (e.g., as in the second test-case of Section 7.5).

min
x

f
[
−PD(x) −R(x) −S(x)

]
s.t. h1 systemsplaced(x) = systemstotal(x)

g1 T (x) ≤ Tdes(x)
g2 ‖LCB(x)− LCG(x)‖ ≤ 2m
g3 GM(x) ≥ 0.75m
g4 GM(x) ≤ 3.50m

(7.1)

Table 7.1: Variations of MCM related characteristics

Name Variations (step) Number
Hull material GRP, AMS, Steel 3
Divers Yes, No 2
# Stingers 1− 2 2
# USV 0− 1− 2 3
USV type 12m -
# UUV (large) 3 -
# UUV (medium) 4 -
# ROV (disposable) 48 -
Endurance MCM operation ≥ 20 days -
Speed MCM operation 8kts -

Table 7.2: Variations of platform characteristics

Name Variations (step) Number
Speed (max) 12− 18kts (+1) 7
Speed (transit) 12− 18kts (+1) 7
Range (transit) 1500− 4500nm (+500) 7
Sensor/weapon suite A (heavy), B (light) 2
UAV (rotary wing) Yes, No 2
Extra working deck Yes, No 2
Extra crew (staff) 0− 15 (+5) 4
Propulsion arrangement CODELOD, CODELAD 2

7.4 Case 1: Damage length

This first case study aims at investigating the influence of a minimal damage length
criterion on the overall size of the ship (e.g., the required survivable damage length
is 15% of Loa). It is expected that a high damage length criterion results in larger
overall ship sizes. For a relatively small vessel, such as a MCMV, this damage length
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criterion can conflict with other size drivers such as cost, or a size and displacement
criteria due to pressure signature reductions.

7.4.1 Set-up

For this test-case scenario the MCMV packing model was set-up with the following
notable settings (see Table 7.1, 7.2 and Appendix A):

• A fixed MCM payload of: one 7m USV; three large UUVs; four medium UUVs;
48 small disposable ROVs, used for mine identification and disposal; and one
diveteam.

• A fixed weapon and sensor suite (type A) which includes; an integrated sensor
mast with 2D search radar; one 30mm remote controlled gun (RCG); and one
.50′′ RCG.

• A fixed propulsion plant concept (CODELOD) with two diesel engines providing
power for sustained transit speed and three small diesel generator sets providing
propulsion and auxiliary power during mine-hunting1.

• A variable maximum and transit speed of 12− 18kts at 1kt increments
• A variable transit range of 1500− 4500nm at 500nm increments

These settings where chosen specifically to keep the payload (MCM and combat sys-
tems) equal so that designs remain comparable. Nevertheless, speed and range are
varied as the individual sizing of the components, and thus spaces, for the CODE-
LOD propulsion plant may possibly interfere with the bulkhead spacing and thereby
damage-length criterion.

x damage
length

Figure 7.2: Illustration of the concept damage length. At any longitudinal position
x the ship should be able to survive the flooding of compartments due to the damaged

length.

The damage length criterion is defined using the concept of Figure 7.2. The black
triangles represent the worst-case maximum flooded length between bulkheads due

1Note the plant concept is fixed, while the sizes of individual components are matched to the
required propulsion power at maximum, transit and operational speed. The physical configuration
of the propulsion plant concept may vary within the ship as-well.
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to the damage length. For the design to pass the criterion, all these black triangles
should fall below the floodable length curve (red). In this case the design fails at
multiple positions. In the Packing-approach each design starts with a damage length
criterion of 16% of the overall length. When the design fails to meet this criterion,
the damage length is iteratively reduced by 1% until it passes.

7.4.2 Exploratory run

The initial run of the interactive approach is intended as an exploratory effort. Besides
the default Packing-approach optimisation settings of (7.1) no additional criteria are
used to steer design generation. This should provide a broad exploration of the design
and solution space. Once a large set of initial designs has been generated, the results
can be explored by the designer. The displacement and length are of particular
interest as these parameters are expected to be driven by a damage length criterion.

In the run a total of 51328 designs were attempted of which 2120 (4%) met the
set non-negotiable constraints of (7.1). A total of 50 designs meet a damage length
criterion of 15% of the length. Figure 7.3 shows the scatterplot matrix for length,
displacement, freeboard, and damage length. The plots include the 15% damage
length criterion boundary (i.e., the blue lines).

Several observations can be made. First, the designs which meet the damage
length criterion have lengths ranging from 74−100m and displacement between 1600−
2400m3 (Figure 7.4). Both length and displacement seem limited on the lower-bound
due to the damage length criterion. Second, there are two distinct clusters of designs
with respect to freeboard. One cluster with a freeboard of around 3m and the other
around 5m. All designs meeting the damage length criterion fall inside this last cluster.
Designs in the cluster with a lower freeboard have at most a damage length of 12%.

The clustering behaviour with respect to freeboard is easily explained. The cluster
with a freeboard of around 5m corresponds to designs with an extra deck within the
hull (i.e., three instead of two decks). The Packing-approach MCMV model has a
fixed deck height which implies there are two possible depths. Nonetheless, the extra
freeboard makes it easier to meet the damage length criterion, which explains why
all feasible designs are located in this cluster. Also, this cluster has a higher average
displacement, which is caused by the added volume and weight of an extra deck within
the hull2.

The initial exploratory run seems to indicate that a high damage length criterion is
in fact limiting the size of the ship. However, in this initial exploratory run no effort
was made to actively search for designs meeting the 15% damage length criterion.
The run only produced 50 feasible designs, potentially leaving a large parts of the
design space unexplored (see Table 7.3). More and smaller designs might exist, which
is something a steering run can reveal.

7.4.3 First steering run

A steering run was made to investigate whether more, and potentially smaller and
lighter, designs exist with a damage length criterion of 15%. A single steering criterion

2The Packing-Approach MCMV model uses a density-based weight calculation
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Figure 7.3: Results of the initial exploratory run including the 15% damage length
criterion boundaries and brushed feasible set R (blue)

was interactively added to the objective function:

r1 Damage length ≥ 15%. (7.2)

By default the Packing-approach objective will already attempt to reduce the dis-
placement of the designs through the maximisation of the packing density (e.g., the
ratio between used and available volume within the hull and superstructure).

In the first steering run a total of 51328 designs were attempted of which 5001
(10%) met the set non-negotiable constraints of (7.1). In the steering run a total of
2168 designs meet the damage length criterion of 15% of the length, a substantial
increase to the 50 designs found in the initial run (see Table 7.3).

The resulting scatterplot matrix of the steering run combined with the results of
the initial run is shown in Figure 7.5. Again, several observations may be made. First,
the steering run has managed to find a considerably larger number of design solutions
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Figure 7.4: Minimum length (front) and minimum displacement (aft) feasible design
solutions from the set of Figure 7.3

meeting the damage length criterion (i.e., 2168 compared to 50 in the first run).
Actively searching for design with a high damage length has resulted in 43% of the
generated design meeting the 15% criterion. The feasible area within the scatterplot of
length and displacement has grown considerably. The lightest feasible design now has
a displacement of 1375m3 compared to 1613m3 in the first run. The shortest design
now has a length of 68m compared to 74m in the first run (Figure 7.6). However, the
range of feasible displacements and length still do not cover the extent of the design
space. There are now also a few design points located further from the main cluster,
these have a lower displacement coupled with a high length and they fall within the
lower freeboard cluster.

Still, it is unsure that the found lower limits for displacement and length are
actually a result of the damage length criterion or whether still small design might
exist. Therefore it is chosen to perform two more steering runs, the first with an added
steering criterion for minimising length, and the second with a steering criterion for
minimising displacement.

7.4.4 Second steering run

The second steering run will investigate the accuracy of the found lower bound for
length, which after the first steering run was 68m for designs meeting the 15% damage
length criterion. To do so, one extra criterion was interactivity added to the steering
objective function:

r1 Damage length ≥ 15%
r2 Length ≤ 70m

(7.3)

We could have chosen to also add a third criterion for minimising displacement in
this steering run. However, the results of the first steering run indicated that there
might be a possible trade-off between length and displacement. That is, some longer
but lighter designs where generated in a relatively unexplored area of the design space
(Figure 7.5). Combining three criteria to search for small lengths, small displacements,
and a high damage length simultaneously might therefore hamper the optimiser’s
effort. Hence, we split this exploration into two subsequent steering runs, one for
length and one for displacement.
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Figure 7.5: Combined results of the exploratory run and first steering run including
the 15% damage length criterion boundaries and brushed feasible set R (blue)

Figure 7.7 shows the resulting scatterplot matrix for the second steering run. Of
the 51328 designs attempted 4022 (8%) were successfully packed and 136 met the
required damage length (see Table 7.3). The shortest feasible design now has a length
of 64m compared to 68m in the previous sets (Figure 7.8). No designs with smaller
feasible displacements were found in this run.

The number of generated feasible designs (136) is substantially lower than the
number generated in the previous run (2168). The combination of searching for a
large damage length and a small overall length, with steering, is apparently more
“difficult” for the search algorithm than solely searching for a large damage length.
This could indicate that the feasible lower limit for length has been reached. The
next run therefore focuses on finding lighter designs.
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Figure 7.6: Minimum length (front) and minimum displacement (aft) feasible design
solutions from the set of Figure 7.5. Note the extra deck and larger freeboard of the

small design.

7.4.5 Third steering run

The third steering run is intended to investigate the lower-bound of displacement. The
first steering run also indicated that potentially low displacement but long vessels
exist meeting a 15% damage length criterion (Figure 7.5 and 7.6). To steer for a
lower displacement, the length criterion used in the previous run is changed for a
displacement criterion:

r1 Damage length ≥ 15%
r2 Displacement ≤ 1370m3.

(7.4)

The value of 1370m3 was chosen because it is close to the displacement of the lightest
feasible design in the previous sets. The fuzzy utility functions described in Chapter 6
ensure that designs close to this displacement are rated as more relevant in the gen-
eration process.

Figure 7.9 shows the scatterplot matrix for the third steering run. Again 51328
design were attempted, of which 2723 (5%) were successfully packed. 618 design
meet the damage length criterion of 15% (see Table 7.3). The shortest design has not
changed and is still 64m. However, the lightest feasible design found is now 1202m3

compared to 1357m3 from the first steering run (Figure 7.6). The shortest and lightest
design are both displayed in Figure 7.10.

The feasible designs now span the entire range of generated displacements. This
last steering run confirms the trade-off initially found in the first steering run, that
is, the Pareto-front in the plot of displacement versus length. To meet the damage
length criterion with a reasonable displacement, a design is either long with a low
depth or short with a higher depth (i.e., at the cost of more displacement due to the
excess volume within the hull). This difference can be seen in the figure comparing
the shortest and lightest feasible designs found in the entire exploration (Figure 7.10).

At a displacement of about 1300m3 a gap in the Pareto-front of displacement
and length can be observed (Figure 7.9). At this displacement the minimum feasible
length jumps from 68m to about 87m. This gap is caused by the discrete number of
decks within the hull of the designs combined with a fixed deck height of 2.50m, which
causes the distinct clustering of depth and freeboard. Lighter shorter designs are only
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Figure 7.7: Combined results of the exploratory run and two steering runs including
the 15% damage length criterion boundaries and brushed feasible set R (blue)

possible with a lower depth and freeboard as this eliminates the excess volume within
the hull currently present in the shorter feasible designs. It is plausible that a design
model with a variable deck height will produce “intermediate” solutions filling the
gap now present in the Pareto-front. In which case more compromise solutions would
be present in the front for the designer to choose from.

7.4.6 Summary

This first test-case has given an idea of how a naval architect can use the interactive
concept exploration approach to identify and investigate possible trade-offs caused
by a damage length requirement. Steering was used extensively to make sure the
exploration effort focussed on generating and uncovering designs meeting the damage
length criterion while reducing ship size and displacement. Though their relation
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Figure 7.8: Minimum length (front) and minimum displacement (aft) feasible design
solution from the set of Figure 7.7. The minimum displacement design is still equal

to the one found in the first steering run (Figure 7.6).

with cost is not absolutely clear, ship size and displacement, combined with the fixed
payload in this test-case, are considered as indicators for cost3.

In total four runs were made, one initial exploratory run without criteria, and three
consecutive steering runs with a criterion for damage length and changing criteria
for ship size (length) and displacement. A summary of the number of attempted,
generated and feasible designs is presented in Table 7.3.

Table 7.3: Number of designs per run (dL refers to the damaged length)

Run Attempted Generated
Feasible

(dL ≥ 15%)
Criteria used

1 51328 2120 (4%) 50 (2.4%) -
2 51328 5001 (10%) 2168 (43.4%) dL ≥ 15%
3 51328 4022 (8%) 136 (3.4%) dL ≥ 15%, L ≤ 70m
4 51328 2723 (5%) 618 (22.7%) dL ≥ 15%,∇ ≤ 1370m3

- - - - -
Total 205312 13866 (7%) 2972 (21.4%) -

The number of designs per run that meet the damage length criterion illustrate an
important point (Table 7.3). The initial exploratory run provided only a small amount
of feasible designs (i.e., 50 out of 2120 generated). Insights regarding the influence of
damage length on ship size and displacement would have been premature, and even
incorrect, would the designer have solely used this initial set. The 50 initial feasible
designs are only present in a small part of the design space representing rather large
and heavy designs.

However, as was also extensively discussed by van Oers (2011b, Ch. 7), this in-
crease of ship size and weight could simply be an artefact of a static and ill-defined set
of designs. That is, the set was generated with no effort to actively search for, and gen-
erate, designs that meet the set 15% criterion. Hence, smaller designs could exist, yet
they have simply not been generated and explored yet. The consecutive steering runs

3For this test-case the integrated cost model was not yet available (see Appendix A)
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Figure 7.9: Combined results of the exploratory run and three steering runs includ-
ing the 15% damage length criterion boundaries and brushed feasible set R (blue)

(2-4), which do have incentive to actively search for the sought after damage length,
indeed confirm this artefact. That is, the initial set showed an artificial increase in
size and displacement and incorrect representation of the lower-bounds.

The final design space plots confirmed the existence of a clear trade-off in the
current design model between a long hull combined with a low depth or a smaller
hull paired with a higher depth and displacement (Figure 7.9 and 7.10). By studying
the actual design solution at the extremes and along the Pareto-front provides the
designer with an understanding of why the trade-off actually exists. In this case, it
turns out to be an effect caused by the discrete number of decks within the hull with
a fixed deck height. These are set within the Packing model.

A variable deck height will bring the two extreme solutions closer together (Fig-
ure 7.10). That is, the long and slender design, when fitted with a slightly higher
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Figure 7.10: Minimum length (front) and minimum displacement (aft) feasible
design solution from the set of Figure 7.9.

decks, will meet the damage length criterion at a smaller length without creating
too much excess volume within the hull. These solutions are expected to fill in the
large gap and jump which exists in the design space caused by the distinct clusters of
freeboard and depth. This hypothesis was not tested, as it would require significant
alterations to the used MCMV design model.

7.4.7 Reflection and discussion

Section 7.1 presented several tasks deemed essential for understanding and gaining
insight during concept exploration. These tasks are:

Task 1: linking design criteria to (system) solutions and vice-versa;
Task 2: identify if and when criteria interact or conflict and show a trade-off;
Task 3: identify how to avoid or resolve such conflicts;
Task 4: identify why criteria interact and conflict.

If and how the damage length test-case has shown the possibility of performing the
above tasks using the interactive approach is discussed below.

This test-case has aided in identifying that, for a given damage length criterion,
and considering the limitations of the Packing-approach MCMV model, two main
solutions exist (Task 1). The first is a design solution with high length, lower freeboard
and depth, and, due to a low amount of excess volume, a low displacement. The
second, is a design solutions with lower length, higher freeboard and depth, and due
to the added deck and associated excess volume within the hull a higher displacement.

The results indicated a clear trade-off between these two main design solutions
(Task 2). It was identified that this trade-off originates from the distinct clustering
of freeboard and depth, caused by a fixed deck height coupled with a discrete number
of decks within the hull. Shorter designs are only able to meet the damage length
criterion with the extra freeboard of three decks within the hull. However, this adds
excess volume to the hull, thus increasing its displacement. The interactive approach,
together with an experienced user with knowledge of the underlying design model, can
thus aid in identifying why the original trade-off between the two extreme solutions
occurs (Task 4).
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It was hypothesised, that a variable (higher) deck height should resolve the distinct
trade-off now existing. Shorter designs would then have a higher deck height thereby
increasing freeboard at only a slight increase of hull volume. In addition, currently
the margin line used in the floodable length calculation does not vary in hight over
the length of the hull. For concepts which have a higher freeboard at the bow, this
leads to a lower allowable floodable length in the forward part of the vessel. These
modification are expected to resolve the large trade-off which is now caused by the
distinct clustering of freeboard and depth (Task 3 and 4).

In conclusions, this test-case has demonstrated how the developed interactive ap-
proach can be used to explore in detail the design impact of a specific criterion (e.g., in
this case a required minimum damage length). The final trade-off represents two very
different design solutions, hence the ability to guide the exploration effort towards
those specific solutions is of great benefit. In addition, although the damage length
criterion is considered a numerical characteristic of the design, the consequences of
architectural elements, such as, the internal arrangement, deck-layout, and bulkhead
spacing, are clearly at the basis of the damage length criterion’s design impact.

Although this test-case has shown several benefits of the developed interactive
approach for exploring design impacts of a criterion, it has not covered the exploration
of a balance of multiple varying design criteria. That is, as would be the case in a
more practical real-world preliminary design situation where multiple criteria must be
balanced for a given budget (e.g., see Zandstra et al., 2015). Also, this first test-case
has not dealt with criteria representing discrete options (e.g., such as the choice for a
type or number of a system or multiple systems). Hence, a second test-case is needed
which explores such variations and criteria.
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7.5 Case 2: Capability versus budget

The second test-case aims at investigating possible trade-offs between MCM system
capabilities and other ship characteristics for a given budget (e.g., trade-offs in the
number and type of MCM systems, platform signature reduction through different
hull materials, type of weapon and sensor suite). In addition, it is worthwhile to
investigate logical combinations of options. That is, some combinations of options
are more easily obtained than others due to their different design impacts. Finding
such combinations is important, as it helps designers understand the design impacts
and budgetary consequence of desired design criteria.

7.5.1 Set-up

This test-case makes use of the full variability present in the MCMV synthesis model.
The model varies: main MCM systems, signature reduction measures through hull
material, crew as function of systems plus extra provisions for varying staff size,
weapons and sensor suite. In addition there are variations of mothership platform
characteristics such as speed, range, and food endurance (see Table 7.1 and 7.2 and
Appendix A).

For this particular test-case an integrated procurement cost estimation model was
kindly provided by DMO (see Appendix A). This cost model is weight-based and fol-
lows the NATO ANEP-41 standard on ship costing (NATO, 2006). The costing data
has been altered and scrambled so that figures may be presented in this
dissertation. Thus, both the absolute and relative costs of different design
options do not reflect actual real-world numbers. Nonetheless, the cost
model was altered such that the trend it produces remains representative
of the design options chosen.

A fixed project budget of e 19 million is used throughout the test-case. This is the
average budget for a single vessel out of a class of four. Furthermore, it is assumed
that all four vessels in the class are equal. In reality there is also the option to mix
a different number of vessels with varying capability for the given budget. However,
this test-case will not explore such class mixing. Nonetheless, especially for larger
navies, exploring the influences of requirements may also be interesting from a fleet
perspective (e.g., see Doerry and Fireman, 2009).

7.5.2 Test-case strategy

Before elaborating on the actual execution of the test-case, the strategy adopted when
using the interactive approach work-flow of Figure 3.2 is explained. To achieve the
final goal of the test-case (i.e., identifying desirable combinations of MCM and plat-
form characteristics for a given budget) several iterations of the interactive approach
work-flow are made. These iterations are split into several strategy steps, each with
a specific purpose in the test-case exploration effort. They are further covered in this
Section before the full detailed execution of the test-case strategy is elaborated in
Sections 7.5.3 to 7.5.7. A compacted summary and discussion of the main findings of
each step is presented in Section 7.5.8.
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Figure 7.11: Link between the steps of the test-case strategy and the interactive
approach work-flow presented in Figure 3.2 (green indicates a primary use of that part
of the developed interactive approach, while red indicates secondary use). Together

these strategy steps form the work-flow of the test-case.
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Step 1: Exploratory runs

The first step of the test-case strategy is to generate a diverse set of designs. Ini-
tially, the goal of the exploration effort is to identify the limits of the design and
performance space as described by the current design model and its implemented
MCM system options and platform variations (Tables 7.1 and 7.2 and Appendix A).
That is, given these variations, what are the lowest cost and most capable solutions.
This not only provides reference values for technical and cost characteristics, it also
forces a broad exploration of the design space by the search algorithm. First focussing
on minimum cost and then on the maximum capability provides a simple method of
filling the potential solution space with diverse candidate designs. This is due to the
randomness introduced by the search algorithm’s crossover and mutation operations
(see Chapter 4 and 6).

For this step of the test-case strategy the focus lies on using the interactive ap-
proach to generate a diverse set of designs based on several a-priori defined criteria
(e.g., those associated with a design with maximum capability). Figure 7.11a shows
that mostly the first and second step of the proposed interactive approach are relevant
in achieving this initial exploration (shown in green). The exploration and steering
steps (shown in red) are only used to verify whether a sufficiently large and diverse
set is achieved, after which the designer may choose to slightly adjust the criteria and
generate additional designs.

Step 2: Steering runs

Where Step 1 focusses on identifying the upper and lower bounds of the design and
performance space and on generating a large and diverse set of designs, Step 2 focusses
on finding affordable trade-off solutions which have different combinations of the vary-
ing design options from Tables 7.1 and 7.2. To do so, requires several sub-steps which
make use of the interactive exploration and steering ability of the approach work-flow
presented in Figure 3.2 and repeated here in Figure 7.11. The sub-steps of the strategy
are:

Step 2.1: Individual design impact studies

This first sub-step aims at determining which individual, and combinations of, design
variations have a high design impact. That is, the impact with respect to technical
characteristics (e.g., ship size and weight) and cost. This sub-step of the strategy
makes primary use of the exploration part of the proposed interactive approach (green
in Figure 7.11b and see Chapter 5).

In addition to gaining insight about design impacts, the explorations performed
in this sub-step may also reveal design options which are, as of yet, not very well
represented within the design space. That is, designs with those specific options have
simply not been generated and explored yet. At this point, individual steering runs
with targeted steering criteria can focus the search effort towards those specific parts
of the design space (see the red steps of Figure 7.11b). This allows the designer to
selectively fill-in the desired yet missing parts of the design space which followed from
Step 1 of the strategy.
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Step 2.2: Identify affordable trade-off solutions

In the next sub-step, the insight gained from the design impact studies of Step 2.1
is used to explore and identify promising trade-off solutions lying within limits of
the project budget. The high impact (driving) design options that are identified in
Step 2.1 are of primary interest in identifying these trade-off solutions.

In this sub-step no additional designs are generated. Instead, the initial diverse set
of designs that was generated in Step 1 and the additional designs that are generated
in Step 2.1 are explored in search for the affordable trade-off solutions. Hence, only
the interactive exploration part of the proposed approach is applied in this part of
the test-case (green in Figure 7.11c and see Chapter 5).

Step 2.3: Focus search effort towards identified trade-offs

Step 2.2 only explored and identified relevant trade-off solutions. However, the
broader exploratory nature of the initial strategy steps means that the identified trade-
off options are probably ill-defined within the current set of designs. Most likely, only
several designs which match the found trade-off options have been generated so-far.
Hence, further focussing is needed to verify whether the identified trade-off options
remain valid and desirable.

The main characteristics of each design solution identified in Step 2.2 are used as
steering criteria to focus design generation towards the solution space surrounding
each concept. The designer can then explore the differences between the design space
before and after steering to verify whether the identified concept is still desired or if
new more promising concepts have been generated. So, for each identified solution the
following three parts of the interactive approach are executed (green in Figure 7.11d):

1. Adjust the steering criteria to match main properties of the identified solution
that is currently under investigation.

2. Generate an additional set of designs targeting these newly adjusted criteria.
3. Explore the expanded set of designs to verify whether the original solution is

still valid or if more desirable designs have been generated.

To demonstrate how focussing of the exploration effort works, this test-case per-
forms only one steering iteration step for each trade-off solution (the three points
above). However, in practice a designer might choose to run more than one iteration
for the most interesting design solutions. These subsequent iterations could focus
on more detailed or secondary aspects of the design solution. For example, criteria
which are initially of secondary importance (i.e., in the example of this test-case these
criteria concerned speed, range or the number of additional staff).

Step 3: Compare final solutions

The final step in the test-case strategy is to select and compare the final desired trade-
off solutions. At this point they should all represent affordable trade-offs of the varying
design options from Tables 7.1 and 7.2. Further comparison and selection should
therefore be based on other design characteristics, such as, operational performance
or producibility aspects. These types of performance aspects where not considered in
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this dissertation (see Section 1.6). However, a qualitative comparison is made based
on the operational concepts presented in Section 7.2.

This step of overall strategy makes use of the design exploration and selection parts
of the proposed interactive approach work-flow (indicated green in Figure 7.11e). No
additional steering runs based on adjusted criteria are performed at this time.

7.5.3 Step 1: Exploratory runs

The first couple of exploratory runs focus on generating a large set of diverse designs
and on finding minimal cost and maximal capability solutions. That is, given the non-
negotiable design criteria and minimum or maximum options for the design variations
(e.g., speed, range, payload, MCM and weapons systems) what are the lower and
upper bounds of cost? These runs will give an indication of minimum and maximum
bounds of the design space. Additionally, first leaving all variations options open and
then fixing them to their maximum “values”, creates a large set of diverse designs.
This is caused, by the nature of the genetic algorithm’s evolutionary operations.

In total five exploratory runs were executed (Table 7.4). Each run attempted to
generate a total of 12625 designs. The runs used a population of 128 designs over 101
generations, expect for the fourth run which used 201 generations. This was done in
an attempt to increase designs with two USVs. The first run solely minimised cost
as an objective. The four subsequent runs attempted to minimise cost including the
following added criteria to maximise capability:

r1 Staff provisions = 15

s1 #USV ≥ 2
s2 UAV = Yes
s3 Divers = Yes
s4 Sensor/weapon suite = A (heavy)
s5 Hull material = GRP

(7.5)

In total the five runs produced 10464 (14%) packed designs which met the default
non-negotiable criteria as defined in (7.1).

Table 7.4 also indicates why in total four runs (runs 2-5) where made attempting
to maximise capability. Initially, in run 2, no solutions where found that satisfied the
criteria of (7.5), hence several iterative runs where needed to increase this number
and provide more diversity in the results. This was achieved by executing the iterative
feedback loop in the exploration work-flow (red in Figure 7.11a) without adjusting
the criteria. Run 3 is an exception, here the criterion for the number of USVs was
dropped to at least one in a further effort to aid the generation of high capability
designs.

The resulting design space plot of the five exploratory runs is shown in Figure 7.12.
The individual plots compare total unit cost, enclosed volume of the hull and super-
structure, and displaced volume. Enclosed volume allows comparison across designs
with different types of hull material. For example a design with a GRP hull which is
similar to a design with a steel hull will have a lower displacement but similar enclosed
volume.
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Table 7.4: Number of designs attempted, successfully generated (packed and meeting
constraints), and that met the used criteria for the first five exploratory runs.

Run Attempted Generated
Feasible wrt.

criteria
Criteria used

1 12928 2464 (19.1%) - -
2 12928 1883 (14.6%) 0 as (7.5)
3 12928 1547 (12%) 77 (5.0%) as (7.5) but 1 USV
4 25728 2812 (10.9%) 90 (3.2%) as (7.5)
5 12928 1758 (13.6%) 136 (7.7%) as (7.5)
- - - - -

Total 77440 10464 (13.5%) - -

Note, the bulk of the design points are located in the lower-left corner of all the
design space plots. This is where the focus of the search algorithm was located due to
minimising cost. Hence, both displacement and enclosed volume have been reduced.
The designs with higher displacements and volumes naturally have lower packing
densities. These designs have a large amount of unused volume within the hull and
superstructure and are thus considered as less realistic.

Minimum cost (least capable) solutions

Table 7.5 shows a selection of low cost solutions from the first exploratory runs. All
cost around e 13 million. They have an ordinary steel hull, weapons and sensor suite
type B (light), in addition none have any USVs or UAVs. However, though they
have the lowest cost, these designs do not have the lowest options for transit speed or
range. LC2 and LC4 have a transit speed of 12kts and a range ≥ 3500nm. The two
longer and more slender LC1 and LC3 designs have a higher transit speed of 14kts
and a range of 4500nm. The higher speed is probably due to their more favourable
resistance properties, allowing a higher speed with the same installed engine power.
Also, all designs have provisions for a dive team.

There are two different global general arrangement solutions. One longer vessel
with elongated superstructure and aft facing machine gun (concept LC1 and LC3)
and one shorter vessel with a larger superstructure and either a forward or aft facing
machine gun (concept LC2 and LC4). The packing densities of these designs are
around 86% for the longer vessels and 84% for the shorter vessels.

Most capable solutions

Table 7.6 shows a selection of the lowest cost maximum capability solutions, that is,
designs with criteria as defined in (7.5). All these designs cost around e 22 million,
which is around e 9 million more than the least capable low cost solutions of Table 7.5.

Contrary to the minimal capability low cost solutions, the global general arrange-
ments for the four maximum capability designs does not show much difference. The
USV deck and UAV launch and recovery deck are located aft. The UAV deck and
adjacent hangar pushes the up and down-takes for the engine room forward. This,
in turn, limits the placement of the radar mast and causes the similar longitudinal
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Figure 7.12: Design space resulting from first five exploratory runs with highlighted
(green) designs that meet the steering criteria of (7.5). The two black dots represent

the minimum cost and maximum capability solutions (see Figure 7.13).

Figure 7.13: The minimum cost design (front) and maximum capability design
(aft) as highlighted in Figure 7.12, the first costs around e 13 million while the most

capable design costs around e 22 million.
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topside layout. In addition, the type A (heavy) weapons suite has both a forward
and aft firing machine gun, limiting superstructure forward. The packing density of
the designs is around 84%, slightly lower than for the low cost solutions (86%).

To summarise, the initial exploratory runs have provided an understanding of the
boundaries of the possible design space. Based on the non-negotiable requirements a
minimum solution is expected to cost around e 13 million, whereas a design solutions
with maximum system options costs around e 22 million. The project budget was set
at e 19 million, so although the maximum option design falls outside of the scope,
additional exploration is required to identify trade-off combinations of design options
that do fall closer to, or within, the project budget. These additional exploration
steps of the test-case strategy (see Section 7.5.2) are covered in the following sections.

7.5.4 Step 2.1: Individual design impact studies

As was concluded from the first exploratory runs, it is necessary to perform additional
exploration efforts to identify trade-off design. That is, designs which have different
combinations of MCM systems, weapon and sensor suite, and platform characteristics
(e.g., hull material, speed, range, staff capability). The exploratory runs have provided
a broad range of design options covering a large area of the design space. However,
due to the broad focus of the search algorithm in the first few runs, it is unlikely
that many combinations of design options has been explored in equal detail by the
search-algorithm. For example, for many combinations of design options none or only
a few solutions have been generated.

To continue the exploration effort, several steps that involve steering runs are
needed (refer to the strategy in Section 7.5.2). First, the design impact in terms of
size and cost of the individual design options should be assessed. This provides useful
insights for the next step, which is to identify relevant trade-off designs which lie close
to the budget. Third, these relevant designs are then further explored by focussing
the search-algorithm effort at these designs’ characteristics. Finally, in a non-steering
step, the possible trade-offs between the desired solutions, their individual options,
cost, and the available budget can be distinguished.

Nonetheless, before relevant trade-off combinations of options can be identified,
it is worthwhile to investigate the design impact (in terms of size, weight, and cost)
of individual design options (see Step 2.1 of the strategy in Section 7.5.2). Although
such design options cannot strictly be assessed independently, for the sum of the
individual impacts does not necessarily represent the actual combined design impact
of integrated options, the individual option studies do provide understanding as to
why the design impact of combined options may behave differently.

Moreover, studying individual options may reveal the existence of ill-defined op-
tions in the current set of designs, thereby indicating the need to add information by
performing additional targeted steering runs. For example, initially the option of two
USV systems was only present in 405 (3.9%) of the 10464 generated designs from the
first five exploratory runs. Hence, it was decided to perform an additional targeted
steering run which focussed on generating designs with two USVs (i.e., without any
other criteria as was the case in the exploratory runs of Section 7.5.3). This increased
the amount of designs with two USVs to 1007 (8.2%) of the 12271 total designs after
six runs.
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Table 7.5: Four different low cost minimal option design solutions. All have 0 USVs,
no UAV, a steel hull, and the type B (light) weapons/sensor package.

Design concept LC1 LC2

Divers Yes Yes
Extra staff 10 5
Speed (max) [kts] 16 16
Speed (cruise) [kts] 14 12
Range [nm] 4500 3643
Mission [days] 28.0 20
Packing density 85.4% 84.8%
Displacement [m3] 1171 1119
Encl. Volume [m3] 4186 4073
Power Pb/Pe [kW ] 2780/1775 2780/1775
Propulsion concept CODELAD CODELOD
Cost [Me ] 13.1 13.1

Design concept LC3 LC4

Divers Yes Yes
Extra staff 5 5
Speed (max) [kts] 14 17
Speed (cruise) [kts] 14 12
Range [nm] 4500 4000
Mission [days] 28.0 22.2
Packing density 85.6% 82.6%
Displacement [m3] 1164 1133
Encl. Volume [m3] 4167 4015
Power Pb/Pe [kW ] 2780/1775 2780/1775
Propulsion concept CODELOD CODELOD
Cost [Me ] 13.0 13.2
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Table 7.6: Four different low cost maximum capability design solutions. All have
two USVs, a UAV, a GRP hull, a type A (heavy) weapons/sensor package, support

for divers, and provisions for 15 staff.

Design concept MC1 MC2

Speed (max) [kts] 17 17
Speed (cruise) [kts] 15 15
Range [nm] 4500 4500
Mission [days] 23.5 23.4
Packing density 85.4% 85.0%
Displacement [m3] 1284 1287
Encl. Volume [m3] 4640 4630
Power Pb/Pe [kW ] 2780/1775 2780/1775
Propulsion concept CODELOD CODELOD
Cost [Me ] 21.5 21.6

Design concept MC3 MC4

Speed (max) [kts] 17 17
Speed (cruise) [kts] 15 15
Range [nm] 4500 4500
Mission [days] 23.3 23.3
Packing density 84.2% 83.7%
Displacement [m3] 1292 1299
Encl. Volume [m3] 4701 4678
Power Pb/Pe [kW ] 2780/1775 2780/1775
Propulsion concept CODELOD CODELOD
Cost [Me ] 21.7 21.7
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Table 7.7 presents a summary of these three additional targeted steering runs that
where performed during the design impact studies. Similar to the example concerning
the USVs above, the design impact studies indicated that so-far not many designs
with a AMS hull had been generated. Hence, a targeted steering run with maximum
criteria but now with a AMS hull was initiated (run 7). Also, design solutions with
a secondary working deck where not well represented in the current set, hence run 8
was initiated with criteria for at least one USV and a secondary working-deck4.

Table 7.7: Number of designs for the three additional steering runs performed during
the individual design impact studies (continuing from Table 7.4)

Run Attempted Generated
Feasible wrt.

criteria
Criteria used

1-5 77440 10464 (13.5%) - -
- - - - -
6 12928 1807 (13.9%) 602 (33.3%) #USV ≥ 2
7 12928 1340 (10.4%) 145 (10.8%) as (7.5) but AMS

hull, Staff ≥ 10
8 12928 1297 (10%) 464 (35.8%) #USV ≥ 1, 2nd

work-deck

The individual design impact studies for: the number of UVSs, the hull material
choice, and the interactions of speed, range and endurance, are elaborated below.

Impact of number of USV systems

The design impact of the number of USV systems (zero, one, or two) is shown in
Figure 7.14. The plots in Figure 7.14 display several pieces of information:

1. Three criteria boundary curves are shown for the design sets which contain
solution with either zero, one, or two USVs. This provides the designer with an
overall idea of the characteristics of designs with the different number of USV
systems.

2. The budget limit of e 19 million is plotted. This provides a reference when
judging the cost impact of design changes.

3. For each set, one design with the lowest cost is selected and highlighted (e.g.,
see the black dots). To correctly assess the impact of adding one or two USV
systems, the reference designs should be similar. That is, comparing a design
with one USV and no UAV to a design with two USVs and a UAV is not very
useful. The extra UAV changes the relative difference with the first design as it
will also impact the cost and technical characteristics of the design. A simple
way to overcome this issue, is to select the lowest cost design from each set as
a representative solution. In addition, the designer may check to make sure
the designs are comparable and that no large differences exist aside from the
characteristic(s) under investigation.

4see design H in Table 7.12 for an example of the secondary working-deck
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4. For clarity, arrows have been added which link the three design sets and their
representative designs. This helps indicate the design impact of changing the
number of USVs (i.e., when switching from 0→ 1→ 2).

Based on the above information in the plot of Figure 7.14 the following can be deduced.
First, there is a large impact on ship size when changing from zero to one USV. There
is a notable increase in volume, length, and displacement. Second, the impact of
adding a second USV is more related to cost. There is only a relatively small volume
and displacement increase and no length increase.

Table 7.8: Design characteristics of the highlighted USV impact designs of Fig-
ure 7.14

# USV 0 1 2

Length [m] 71 79 79
Displacement [m3] 1111 1249 1257
Enclosed Vol. [m3] 4109 4310 4444
Cost [Me ] 12.9 16.1 17.8
Packing density 85% 79% 83%
Crew(staff) 45(10) 45(10) 52(10)
Divers No Yes Yes

The increases in ship size are easily explained. A 12m USV requires considerable
extra working deck length aft, increasing the overall length of the design by 8m (see
Table 7.8). This extra deck length is also seen in the actual design arrangements in
Figure 7.15. The designs with one or two USV’s (middle and aft in the figure) clearly
have a longer working deck than the foremost design which does not have a USV. In
addition, the arrangements show that the USV’s (green objects on the aft deck) do
not take-up much additional length, yet they do require the need for the working-deck
to be lengthened by one bulkhead spacing. Hence, the added length of around 8m in
case of one or two USV’s.

The increase in length also increases the internal volume of the hull by about 200m3

from 4100m3 to 4300m3. This added volume remains unused as can be noted by the
decrease in packing density from 85% to 79%. A second USV is more easily added
alongside the first without the need for additional length (i.e., compare the middle and
aft designs in Figure 7.15). However, based on the manning model included within the
design model, there is an increase in required crew of seven PAX when a second USV
is added. Hence, some of the added volume as a result of the initial length increase is
compensated by a growth in crew areas. The different packing densities of the three
options confirms this observation. The design with zero USVs has a packing density
of 85% compared to 79% or 83% for one or two USVs respectively.

Impact of hull material option

Similarly to the impact of the number of USVs, the design impact for the choice
of hull material was investigated. Three different types of hull material, providing
different levels of signature reduction, are considered: ordinary shipbuilding steel,
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Figure 7.14: Design impact of number of USV options, properties of the highlighted
designs are shown in Table 7.8

Figure 7.15: Representative design solutions for zero (front), one (middle), and two
(back) USVs, as highlighted in Figure 7.14 and Table 7.8. Note the additional length

of the working deck for the designs with one or two USVs (middle and back).
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anti-magnetic steel (AMS), and glass reinforced plastics (GRP). The design impact
of changing the hull material criterion is shown in Figure 7.16.

As with the USV study, this figure displays several relevant pieces of information.
Three sets of designs, one for each material option, including their criterion boundaries
are plotted. Also, to judge the impact of changing the hull material, three comparable
and representative design solutions (one for each set) are highlighted (see Figure 7.17
and Table 7.9). Care was taken to make sure that, apart from the hull material, the
three representative designs have similar numerical and system characteristics (e.g.,
speed, range, MCM systems, crew). The arrows display the criterion change between
the representative design (i.e., when switching from Steel → AMS → GRP).

Table 7.9: Design characteristics of the highlighted hull material impact designs of
Figure 7.16

Hull material Steel AMS GRP

Length [m] 79 79 77
Displacement [m3] 1175 1174 1152
Enclosed Vol. [m3] 4289 4301 4284
Cost [Me ] 13.0 14.0 15.2
Packing density 88% 88% 84%
Crew(staff) 50(15) 50(15) 50(15)
Divers Yes Yes Yes

Several insights may be deduced from the plot. First, the cost impact of changing
from steel to AMS is similar to the impact of changing from AMS to GRP (i.e., a
cost increase of e 1 million). Next, as the representative design have similar charac-
teristics (i.e., in terms of MCM systems, sensor and weapon systems, crew size, and
global layout) their enclosed volumes and length are comparable. Figure 7.17 further
confirms this, as also the overall layout of the vessels are comparable. Naturally,
displacement for the GRP design is lower, though not by much. The displacement
versus cost plot (centre of Figure 7.16) shows that lower displacement GRP designs
do exist, however, they do not compare to the AMS and steel representative designs
selected. In addition, the packing density of the GRP design is lower than the other
two representative designs (Table 7.9). This indicates potentially better packed (with
a lower volume and displacement) GRP designs exist but have not yet been generated.

Table 7.10: Comparison of the initially identified GRP and steered GRP* design as
part of the hull material impact side-study

Hull material GRP GRP*

Length [m] 77 77
Displacement [m3] 1152 1135
Enclosed Vol. [m3] 4284 4276
Cost [Me ] 15.2 14.9
Packing density 83.9% 85.4%
Crew(staff) 50(15) 50(15)
Divers Yes Yes
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Figure 7.16: Design impact of hull material choice

Figure 7.17: Representative design solutions for the hull material choice as high-
lighted in Figure 7.16. Steel (front), AMS (middle), and GRP (back).
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A short side-study (outside of this test-case) was later performed to check whether
indeed lighter (and cheaper) GRP designs exist. To confirm this, one additional steer-
ing run was performed which focussed on generating more designs with a GRP hull
and equal characteristics to the AMS and steel designs identified above (i.e., with
similar criteria for speed, range, staff provisions, and divers support). This indeed
produced a lighter design with a more similar arrangement and packing density com-
pared to the steel and AMS designs. Its properties are displayed together with the
initial GRP design in Table 7.10.

Interactions of cruise speed, range, and mission endurance

During the initial exploration (Step 1 of the exploration strategy) it was noticed that
the maximum speed, cruise speed, and range of the concepts is not always equal to the
lower bound value of 12kts and 1500nm. This observations warrants some attention
as it illustrates how the interactive exploration approach, coupled with engineering
judgement and design model knowledge, allows the designer to investigate why this
is happening.

First, all designs have a CODELOD or CODELAD engine configuration (see Ap-
pendix A). For mine-hunting operations an electric motor and two diesel-generator
sets provide (silent) propulsion power. For transit and maximum speed two diesel
engines, or a combination of diesels and electric motors, is used. These engine config-
urations, coupled with a minimum diesel engine size of 1390kW in the design database,
provides sufficient power to propel the concepts at more than the minimum required
cruise speed of 12kts. Second, for redundancy reasons two shaft-lines are required
which results in a minimum installed propulsion power of 2780kW (in CODELOD
configuration). This indicates that other propulsion concepts and components could,
at lower speeds, provide smaller solutions for this type of vessel. For example, the
integrated full electric propulsion as applied in the model of Zandstra et al. (2015).
If so, the design impact of required maximum and cruise speed may again be more
important. In addition, the low power requirements at cruise speed together with the
available volume in the double bottom (due to the ships’ size) also means range is at,
or more than, the required maximum of 4500nm.

A B
dtransit

Vcruise

B C

dmission/2

Vcruise

thunting

Vhunting

Figure 7.18: A simple transit range (top) and a mission range/endurance (bottom).
One can overrule the other in required fuel, this then increases either the transit range

or the available hunting time (as mission range is constant).
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Also, when the cruise speed is less than 13kts, the fuel endurance of the design was
found to be dictated by the hunting mission profile. In this profile the total mission
endurance is 20 days. This includes the time required to sail a transit (at cruise speed)
to-and-from a hypothetical staging area of in total 1000nm. The remainder of the 20
day mission endurance is then left for mine-hunting operations. Thus, when fuel is
dictated by the 20 day mission profile, the transit range can be higher (Figure 7.19a).
Or, when fuel is dictated be the transit range, the mission duration may be longer
than 20 days (with a maximum of 30 days due to food/part stores, Figure 7.19b). This
explains why, at lower cruise speeds, the transit range exceeds the maximum required
value of 4500nm (see design concepts A,B,C,E, and F ). Figure 7.18 provides a
graphical illustration of the two fuel endurance requirements, also refer to Appendix A
for more detail on the speed, range and endurance calculations.

Closing remarks of impact studies

Studying individual design options and their impacts, as was performed with the
USVs, hull material choice, and the range/endurance interactions, provides insight
into why and how these impacts occurs. In addition, the design options with the
highest impacts provide a basis for identifying trade-off design options in the next
step of the exploration effort (Step 2.2). Two additional plots for the design impacts
of the UAV system and the choice of combat and sensor system suite can be found in
Appendix B.

Similarly to the first damage length test-case, the impact studies also aided in
identifying areas of the MCMV design model where changes and improvements could
be made. For this, the detailed exploration of individual criteria, and specifically
why and how the model behaves to these criteria, forces the user to reflect on the
underlying assumptions and constraints. For example, the impact study of the inter-
actions between range, speed, and endurance indicated that the current propulsion
plant concept and its assumed component sizing could be improved and that the
chosen operational profiles have an inherent interaction.

7.5.5 Step 2.2: Identifying relevant trade-off combinations

The individual impact studies of the Step 2.1 indicated that the largest design and
cost impacts are to be expected from: the USVs, the UAV, hull material choice, and
the chosen weapons and sensor suite. For these options promising combinations lying
within or close to the budget margin (e 18-20 million) were explored and identified
by systematically varying the criteria related to these options using the interactive
exploration tool (Table 7.11). Hence, in this step of the test-case strategy no new
designs were generated (see Section 7.5.2 and Figure 7.11c).

In total 36 combinations of variations of the high impact criteria where explored
with the interactive approach. For each variation, first the set of designs which meet
the selected combination of criteria was identified. Next, from this set the lowest cost
design solution was chosen, and its cost compared to the budget margin of e 18-20
million. Finally, only those solutions which had a cost within the budget margin are
selected as initial affordable trade-off combinations.

The above exploration and selection process can also be partially automated when
more variations of criteria must be assessed. However, only the high impact design
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(a) Selected designs with fuel endurance dictated by the mission profile, hence transit range
is higher than initially required.

(b) Selected designs with fuel endurance dictated by transit, hence the mission endurance
is longer than initially required.

Figure 7.19: Interactions between cruise speed, transit range and mission endurance.
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Table 7.11: Systematic variations of high impact design options

Variation # USV # UAV Combat/sensor suite Hull material
1 0 0 B (light) Steel
2 1 0 B (light) Steel
3 2 0 B (light) Steel
- - - - -

34 0 1 A (heavy) GRP
35 1 1 A (heavy) GRP
36 2 1 A (heavy) GRP

variations, as identified in Step 2.1, are used to select designs. In addition, often the
design options under consideration can be logically grouped, reducing the need to
cover individual options (e.g., as was done for the combat and sensor systems suite
in this design).

The 12 selected affordable design combinations are shown in Table 7.12. Each
design concept was identified by first selecting the main preferred criteria, that is,
the design options for the number of USV and UAV systems, type of hull mater-
ial, and weapons and sensor fit. Based on the lowest cost design concept meeting
these preferred criteria, other attainable design characteristics may be derived (e.g.,
speed, range, staff provisions and diver support). From Table 7.12 several interesting
observations may be noted:

• First, all affordable design concepts have at least one USV system. Without
this option, even with all other options selected (e.g., a UAV, GRP hull, and
heavy combat system suite), the design concepts do not reach the lower budget
margin of e 18 million.

• The option of 2 USVs and signature reduction measures (AMS or GRP hull)
only seems affordable without a UAV and with only the basic light combat
and sensor suite (see design concepts A, B, C, E, and F ). Hence, if signature
reduction and a heavy combat sensor suite are desired, this requires dropping
one USV system (see design concepts D, G, I, and J ).

• Design concept H has the USV working deck forward of the superstructure.
Although, this was initially also an available design option, the forward USV
deck in this arrangement is considered undesirable. Launch and recovery is
expected to be difficult due to higher vertical motions at the bow when compared
to the stern. In addition, the forward working deck also restricts the placement
of a forward firing main gun (e.g., design H has the light combat systems suite
with one aft firing machine gun).

In addition, the packing densities of the identified design concepts vary consider-
ably (between 75-85%). This indicates not all concepts have been equally explored.
Further focussing on the individual concepts will likely reveal more dense arrange-
ments with less unused space, hence resulting in a lower cost solution. Hence, the
need for Step 2.3 where the exploration will focus towards the 12 individual concepts
and their characteristics.
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Table 7.12: Initial identified trade-off combinations of design options for a budget
of around e 19 million. The highlighted options were used as criteria to select the
concept as a baseline. The other options resulted from the lowest cost design for the

selected baseline characteristics.

Design concept A B

#USV 2 2
#UAV 0 1
Hull material GRP Steel
Weapon suite B (light) A (heavy)
Divers Yes Yes
Extra staff 10 15
Speed (max) [kts] 17 17
Speed (cruise) [kts] 12 12
Range [nm] 4750 4740
Mission [days] 20 20
Packing density 79.1% 81.3%
Cost [Me ] 20.0 20.0

Design concept C D

#USV 2 1
#UAV 1 1
Hull material Steel GRP
Weapon suite B (light) A (heavy)
Divers Yes Yes
Extra staff 15 15
Speed (max) [kts] 16 17
Speed (cruise) [kts] 12 15
Range [nm] 4680 4500
Mission [days] 20 26.6
Packing density 75.4% 84.9%
Cost [Me ] 19.6 19.5
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Continued from previous page...

Design concept E F

#USV 2 2
#UAV 0 0
Hull material AMS Steel
Weapon suite B (light) A (heavy)
Divers Yes Yes
Extra staff 10 15
Speed (max) [kts] 18 17
Speed (cruise) [kts] 12 12
Range [nm] 4770 4740
Mission [days] 20 20
Packing density 81.4% 84.7%
Cost [Me ] 19.1 18.8

Design concept G H

#USV 1 1
#UAV 1 1
Hull material AMS GRP
Weapon suite A (heavy) B (light)
Divers Yes No
Extra staff 5 10
Speed (max) [kts] 15 18
Speed (cruise) [kts] 15 18
Range [nm] 4500 3500
Mission [days] 26.5 24.5
Packing density 84.1% 80.6%
Cost [Me ] 18.8 18.7
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Continued from previous page...

Design concept I J

#USV 1 1
#UAV 0 0
Hull material GRP AMS
Weapon suite A (heavy) A (heavy)
Divers Yes Yes
Extra staff 10 15
Speed (max) [kts] 17 15
Speed (cruise) [kts] 15 15
Range [nm] 4500 4500
Mission [days] 23.6 23.5
Packing density 82.3% 78.6%
Cost [Me ] 18.7 18.6

Design concept K L

#USV 1 1
#UAV 1 0
Hull material AMS GRP
Weapon suite B (light) B (light)
Divers Yes Yes
Extra staff 10 15
Speed (max) [kts] 17 17
Speed (cruise) [kts] 17 16
Range [nm] 4500 4500
Mission [days] 30 28.7
Packing density 79.0% 76.6%
Cost [Me ] 18.5 18.5
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7.5.6 Step 2.3: Focussing the search effort

Step 1 of the test-case strategy explored the extent of the design space and attemp-
ted to generate a diverse set of designs covering a broad set of design options (Sec-
tion 7.5.2). From these exploratory runs several promising design concepts which lie
close to the project budget were identified (Step 2.1 and 2.2 in Section 7.5.2). How-
ever, not all of these concepts have been fully explored in the current set of designs.
That is, in Step 2.2 they are selected from the static set of designs that was thus-far
generated. The initial exploration runs did not focus the search effort directly at the
identified concepts and their characteristics. Therefore, it is likely that some may
turn out to have a lower cost, or changes in performance, once they are further ex-
plored. To investigate whether this is indeed the case, the subsequent exploratory
effort is focussed on the 12 initial affordable design concepts (Step 2.3 in the strategy
of Section 7.5.2).

In total 12 steering runs where performed in this step, one for each affordable
design concept identified in Step 2.2. A summary of all runs is provided in Table 7.13.
Each run uses steering criteria which are further highlighted in Table 7.12. For ex-
ample, the criteria used for the steering run of design L (run 9) are:

s1 #USV ≥ 1
s2 Hull material = GRP.

(7.6)

The steering process for design J (run 11) is elaborated in more detail below. The
other runs follow this same process and are hence not further discussed.

Table 7.13: Number of designs attempted, successfully generated (packed and meet-
ing constraints), and that met the used criteria for all steering runs of Step 2.3 (con-

tinuing from Table 7.4 and 7.7).

Run Attempted Generated
Feasible wrt.

criteria
Criteria used

1-8 116224 14908 (12.8%) - -
- - - - -
9 12928 2157 (16.7%) 595 (27.6%) see L
10 12928 1547 (12.0%) 314 (20.3%) see K
11 12928 1744 (13.5%) 282 (16.2%) see J
12 12928 1943 (15.0%) 325 (16.7%) see I
13 6528 995 (15.2%) 227 (22.8%) see H
14 12928 1658 (12.8%) 239 (14.4%) see G
15 12928 1402 (10.8%) 315 (22.5%) see F
16 12928 1892 (14.6%) 261 (13.8%) see E
17 12928 2054 (15.9%) 350 (17.0%) see D
18 12928 1538 (12.0%) 454 (29.5%) see C
19 12928 1692 (13.1%) 330 (19.5%) see B
20 12928 1771 (13.7%) 433 (13.7%) see A
- - - - -

Total 264960 35301 (13.3%) - -
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Steering design J (run 11)

Design concept J , which as a baseline was selected with at least 1 USV, 0 UAVs,
an AMS hull, and the heavy weapons suite at a cost of e 18.5 million, was not well
represented in the early runs (see Figure 7.20a). Initially the set contained mostly
designs with 2 USVs, these can be seen clustered slightly above concept J in the
displacement versus cost plot in Figure 7.20a. Only a limited number of 29 designs
with only 1 USV (out of 250 with more than 1 USV) can be seen present in the set
surrounding concept J . In addition, the relatively low packing density of concept J
of 78.2% further indicates that this concept should be further explored.

A steering run focussing on the characteristics of concept J should improve the
low cost boundary of the cluster of design meeting these characteristics. A steering
run, minimising cost with the following added criteria, was therefore performed (see
run 11 in Table 7.13):

s1 #USV ≥ 1
s2 Sensors/weapons = A (heavy)
s3 Hull material = AMS.

(7.7)

Figure 7.20b shows the resulting design space of the steering run. When compared
with the initial design space of Figure 7.20a, considerably more design points were
generated closer to the initial concept J . Now 302 design have exactly 1 USV com-
pared to 29 initially and 636 designs have more than 1 USV compared to 250 initially.
In addition, from this new set of designs a cheaper design concept J∗ which meets
the criteria defined in (7.7) was identified. Both concepts are compared in Table 7.14.
The new design costs e 17.2 million compared to e 18.6 million for J .

Contrary to J , the new design has no support for a dive team or extra staff.
However, it was already found that these last two options will only marginally increase
cost if desired. Interestingly, concept J∗ has a CODELAD propulsion plant. So with
equal mechanical and electrical power the maximum speed can be slightly higher
(17kts versus 16kts). The cruise speed is slightly higher at 16kts compared to 15kts
for the initial concept. This has however lowered the transit range to 4000nm. If the
original higher transit range, support for divers, and support for staff of J is desired,
then the design will cost e 17.7 million (e 0.5 million extra). Note that this is still
lower than the original e 18.6 million of J .

Closing remarks Step 2.3

For all the other initial designs concepts presented in Table 7.12 a similar steering
process, as described for concept J and J∗, was performed. In total this meant
performing 12 steering runs, one for each initial concept. Each run approximately
took 90 minutes to complete.

In addition to targeting the 12 concepts, two more relevant design concepts falling
within the budget margin of e 18-20 million were identified among the extra designs
generated by the steering runs. These design concepts (M and N) initially cost well
above the e 20 million upper budget bound. Hence, they where initially not selected
as relevant trade-offs in Step 2.2. The two new concepts are presented in Table 7.15.
The fact that these new design options have now been identified, indicates that further
steering runs have the added benefit of targeting unexplored areas of the design space
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(a) Pre steering design space with concept J selected. The green set of designs meets the
criteria of (7.7). Most have 2 USVs, hence their higher cost.

(b) Post steering design space with concept J and J∗ selected. The green set of designs
meets the criteria of (7.7).

Figure 7.20: Design space plots to illustrate effect of steering
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Table 7.14: Main characteristics of concept J and J∗

Design concept J J∗

#USV 1 1
#UAV 0 0
Hull material AMS AMS
Weapon suite A (heavy) A (heavy)
Divers Yes No
Extra staff 15 0
Speed (max) [kts] 15 17
Speed (cruise) [kts] 15 16
Range [nm] 4500 4000
Mission [days] 23.5 25.4
Packing density [%] 78.6 83.9
Displacement [m3] 1374 1237
Encl. Volume [m3] 4559 4212
Power Pb/Pe [kW ] 2780/1775 2780/1775
Propulsion concept CODELOD CODELAD
Cost[Me ] 18.6 17.2

surrounding the already identified concepts. Thereby increasing the chance of finding
further as-of-yet unexplored design solutions which closely match the desired criteria.

7.5.7 Step 3: Comparing the found trade-off options

Step 2.3 focussed the effort on each initial design concept. Next, the selection, com-
parison and assessment of the final found trade-off designs is performed. This forms
the basis for the final selection of the desired design concepts (Figure 7.11e). The
new identified design concepts (M and N) and the resulting design concept for all
steering-runs (A∗ − L∗) can be found in Table 7.15 and 7.16 and in Figure 7.21.

As a first observations, concepts I∗ through K∗ are no longer very relevant trade-
off options. After steering, these concepts have fallen below the lower budget margin
of e 18 million. Hence, a more capable design should easily be attainable with the
given budget margin. This also illustrates the effect of steering. These designs where
initially not very well explored which, as a result, gave them a high initial cost es-
timate. So, although initially they represented interesting trade-off options, further
focussing on these concepts has rendered them irrelevant.

The comparison starts by assessing the design with a high expected MCM per-
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Table 7.15: Main characteristics of concept M and N

Design concept M N

#USV 2 2
#UAV 0 1
Hull material AMS AMS
Weapon suite A (heavy) B (light)
Divers No Yes
Extra staff 10 5
Speed (max) [kts] 16 15
Speed (cruise) [kts] 12 15
Range [nm] 4746 4000
Mission [days] 20 23.5
Packing density 83.9% 84.9%
Cost[Me ] 19.5 19.8

formance. For this the number of USVs and hull material choice are considered most
important. Moreover, the individual impact studies indicated that these two design
aspects had a very high cost impact. Consider the design options with 2 USVs. Only
7 of the 14 concepts have this option (A∗, B∗, C∗, E∗, F ∗,M and N). Three of these
(C∗, E∗ and F ∗) fall within the budget of e 19 million. None of these have a GRP
hull, E∗ has an AMS hull, and the others are steel hulls. Concepts F ∗ and M are
linked as the only main difference is the hull material (AMS versus steel), the same
holds for concepts C∗ and N .

There is only one concept A∗ which has 2 USVs and a GRP hull. Nonetheless,
even after steering, this concept remains expensive at e 19.5 million. It also has no
UAV and only a light weapons and sensor package. So, though it excels at MCM
capability, its other capabilities are low. If GRP is really desired then the number
of USVs must be dropped (e.g., concept D∗ or H∗). Thus, if 2 USVs and good hull
signatures are desired, then there appear to be only two affordable solution concepts:
(i) concept E∗ with two USVs, AMS hull, but with a limited weapons and sensors
package, and no UAV at a cost slightly under budget of e 18.5 million; and (ii) concept
M with two USVs, no UAV, an AMS hull, and a heavy weapons package at a cost
slightly over budget of e 19.5 million.

If a balance between MCM operations and other capabilities is sought, then some
further trade-offs must be made. First, adding a UAV is only affordable if either hull
signatures are dropped (i.e., to a steel hull in concept C∗) or the requirement of two
USVs is dropped to one (e.g., concept D∗ or H∗). For example, consider concept N
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Figure 7.21: Final 14 design concepts (A∗−L∗ andM,N) and their relative positions
within the design space.

and K∗ where removing one USV reduces the cost by almost e 2 million. This freed
budget can then be used to add a heavy weapons/sensor suite while staying within
budget (concept G∗ at e 18.3 million). If a GRP hull is really desired then the only
real balanced option is concept D∗, which at a cost of e 19.4 million is slightly over
budget. Concept G∗ is also the cheapest option if only non-MCM related capabilities
are maximised, that is, if a UAV and heavy weapons/sensor suite are required. Even
so, it does have an AMS hull and one USV.

To summarise, if maximum MCM capabilities are required then concept E∗ (e 18.5
million) or M (e 19.5 million) are the best trade-offs. If non-MCM capabilities should
be maximised then concept G∗ (e 18.3 million) is the cheapest option. A good balance
between MCM and non-MCM capabilities are found either in conceptG∗ orD∗ (e 18.3
or e 19.4 million respectively).
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Table 7.16: Final identified trade-off combinations of design options for a budget
of around e 19 million. The highlighted options were used to steer the concept as a

baseline. The other options resulted from the lowest cost design for the baseline.

Design concept A∗ B∗

#USV 2 2
#UAV 0 1
Hull material GRP Steel
Weapon suite B (light) A (heavy)
Divers Yes Yes
Extra staff 10 15
Speed (max) [kts] 17 12
Speed (cruise) [kts] 15 12
Range [nm] 4500 4507
Mission [days] 23.2 20
Packing density 84.5% 86.0%
Cost [Me ] 19.6 19.6

Design concept C∗ D∗

#USV 2 1
#UAV 1 1
Hull material Steel GRP
Weapon suite B (light) A (heavy)
Divers No Yes
Extra staff 5 5
Speed (max) [kts] 14 16
Speed (cruise) [kts] 13 16
Range [nm] 4489 3500
Mission [days] 20 21.8
Packing density 86.0% 83.5%
Cost [Me ] 18.2 19.4
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Continued from previous page...

Design concept E∗ F ∗

#USV 2 2
#UAV 0 0
Hull material AMS Steel
Weapon suite B (light) A (heavy)
Divers No Yes
Extra staff 10 15
Speed (max) [kts] 16 17
Speed (cruise) [kts] 12 13
Range [nm] 4745 4569
Mission [days] 20 20
Packing density 83.8% 84.8%
Cost [Me ] 18.5 18.7

Design concept G∗ H∗

#USV 1 1
#UAV 1 1
Hull material AMS GRP
Weapon suite A (heavy) B (light)
Divers No Yes
Extra staff 0 0
Speed (max) [kts] 15 16
Speed (cruise) [kts] 15 13
Range [nm] 4000 3782
Mission [days] 23.3 20
Packing density 84.1% 85.2%
Cost [Me ] 18.3 18.2
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Continued from previous page...

Design concept I∗ J∗

#USV 1 1
#UAV 0 0
Hull material GRP AMS
Weapon suite A (heavy) A (heavy)
Divers No No
Extra staff 0 0
Speed (max) [kts] 16 17
Speed (cruise) [kts] 13 16
Range [nm] 4058 4000
Mission [days] 20 25.4
Packing density 83.0% 83.9%
Cost [Me ] 17.9 17.2

Design concept K∗ L∗

#USV 1 1
#UAV 1 0
Hull material AMS GRP
Weapon suite B (light) B (light)
Divers Yes No
Extra staff 10 15
Speed (max) [kts] 14 16
Speed (cruise) [kts] 14 15
Range [nm] 4000 3469
Mission [days] 23.7 20
Packing density 84.1% 80.8%
Cost [Me ] 17.7 17.5



DESIGN TEST-CASES 147

7.5.8 Summary

This test-case has shown how the interactive approach can be used to find a bal-
ance between capability (i.e., through variations of systems and ship characteristics)
and budget for a mine countermeasures vessel. Nonetheless, a purely qualitative as-
sessment of operational performance is used in the trade-off comparison and in the
selection of concept solutions. That is, the test-case has shown how the approach can
be used to steer towards a set of technically feasible solutions with different capabil-
ities for a given budget. The test-case strategy of Section 7.5.2 was used to arrive at
this set of design solutions. A summary of the specific steps of this strategy and the
main findings per step is provided here.

1. In Step 1 both a diverse set of designs was generated and an initial exploration of
the extents of the design space was performed (Section 7.5.3). This indicated the
upper and lower bounds of cost given none or maximum set of desirable design
options (criteria). Also, the budget of e 19 million was considered insufficient
to procure a design with maximum capability. Hence, a further balancing of
desirable design variation options and budget was required.

2. In Step 2.1 the initial exploratory results were used to explore and assess the
design impacts, in terms of size and cost, for different design criteria (e.g.,
criteria about design options regarding MCM systems, hull material, combat
and sensor systems, and other platform characteristics). An example for the
impact of changing the criteria for: the number of USVs, the hull material, and
the speed and range are elaborated in Section 7.5.4. The insight gained from
these design impact studies was used to identify which criteria have the largest
expected impact. These were identified as: (i) the number of USVs, (ii) the
choice of a UAV, (iii) the choice for the combat system suite, and (iv) the type
of hull material used for signature reduction measures. Also, for the purpose
of the impact studies three additional steering runs where performed in order
to increase the number of designs with one USV, an AMS hull material, and a
secondary working deck. These types where ill-defined within the initial set of
designs generated in Step 1.

3. In Step 2.2 the high impact criteria were systematically varied and combined
within the interactive exploration approach to identify and select 12 affordable
design solutions, each combining different options of those high impact criteria
(Section 7.5.5).

4. Step 2.3, further focussed the exploration effort towards the identified design
solutions found in Step 2.2 with 12 targeted steering runs. This was done to
validate whether indeed the solutions remained affordable and desirable once
they were further explored. As a by-product, this final step, identified two
additional feasible solutions matching the budget. Initially, these two concepts
were well above the budget due to a lack of convergence (Section 7.5.6).

5. Finally, Step 3 combined all results and identified affordable design solutions
to qualitatively assess the existing trade-offs (Section 7.5.7). From the final 14
design concepts several significant trade-offs were identified. First, regardless of
the other design options chosen, the combination of 2 USVs and a GRP hull is
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not affordable. Thus, if a GRP hull is desired, then the number of USVs must
be reduced. Second, a UAV can only be added by either, dropping the hull
signature requirement and accepting a steel hull, or by reducing the number of
USVs to 1. Third, reducing the number of USVs to 1 saves up to e 2 million,
which can be used to acquire a heavy weapons/sensor suite and an AMS hull
with signature reduction properties, or other options.

In total all steps produced 35302 designs in 19 individual iterations of the approach,
20 runs in total (Tables 7.4, 7.7, and 7.13). This included 5 initial exploratory runs,
3 further steered runs for the design impact studies, and 12 steering runs for the
individual design concepts. On average, each run produced 1765 packed designs out
of 13248 attempted (13% yield) in 126 minutes. That is, 0.6 seconds per attempted
design and on average 4.2 seconds per packed design5.

7.5.9 Reflection and discussion

Section 7.1 presented several tasks deemed essential for understanding and gaining
insight during concept exploration. These tasks are:

Task 1: linking design criteria to (system) solutions and vice-versa;
Task 2: identify if and when criteria interact or conflict and show a trade-off;
Task 3: identify how to avoid or resolve such conflicts;
Task 4: identify why criteria interact and conflict.

If and how the cost versus capability test-case has shown the possibility of performing
the above tasks using the developed interactive approach is discussed here.

The interactive approach has aided in identifying a set of 14 different technically
feasible and affordable design solutions for a given budget criterion of e 19 million
(Task 1). Each concept combines different design criteria (variation options) regarding
the platform characteristics (e.g., speed, range, crew capacity) and combat systems
(e.g., sensors, weapons, MCM equipment). Other solutions, combining other variation
options are available but are either over or under the set budget margin of e 18-20
million (i.e., and if they are under, they may lack potential capability).

Through exploration of several initial exploratory runs it was identified that, to
meet the set budget criteria, a trade-off between design criteria had to be made (Task
2). In addition, the main design criteria (design drivers) with the highest size and
cost impact were identified. This new insight allowed us to study which trade-off
combinations of these driving design criteria would fit the budget (Task 3). Also,
the interactive exploration of individual and combinations of design criteria revealed
why and how these interact (Task 4). For example, several interesting interactions
between speed, range, mission/fuel endurance, and the propulsion plant concept were
elucidated in Section 7.5.4.

Steering was used to focus the effort at the identified trade-offs in an attempt
to further explore the limits of those combinations of criteria and their cost. This
focussing had two results, (i) several concepts which initially were just within budget
turned out to be cheaper when further explored, and (ii) several new design concepts

5The test-case was performed on a laptop PC with a Intel i7-2760QM quad-core (eight thread)
2.4GHz processor with 8GB RAM
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were identified which were initially too expensive. This illustrates that steering was
able to focus concept exploration effort on further converging several designs deemed
of interest. Nonetheless, though steering focusses the search effort, still new affordable
design solutions (e.g., of other combinations of criteria) were found.

The test-case ended with a thorough comparison of the final identified designs (14
in total). A qualitative recommendation of three most desirable designs from this set
was made, yet no single “best” design was selected using the approach. Although
the final set of designs is technically feasible and affordable, the designs are still ex-
pected to perform differently in a operational context due to their varying platform
characteristics (e.g., hull material, speed, and range) and systems (e.g., number of
USVs, availability of a UAV, and type of weapons/sensors suite). Hence, a further
down-selection amongst these technically feasible and affordable concepts calls for
additional (quantitative) information to evaluate and balance aspects such as opera-
tional performance or vulnerability. This information was not available as part of this
research. Nonetheless, a similar approach and strategy as was used in this test-case
can be used to further explore and balance designs regarding operational performance.

The applied strategy of the second test-case (Section 7.5.2 and Figure 7.11) proved
useful in gaining insight. First making a broad exploration and then focussing on
some specific behaviour of the model (e.g., the design impact studies, the general
arrangements and the properties of the initial set of selected trade-off designs) forces
the gradual build-up of insights and knowledge of the underlying problems before
selecting the final desired design solutions. This is reinforced by the fact that the
interactive approach requires the user to identify, and then reflect on, each next
step in the exploration (e.g., trough constantly experimenting and reflecting on the
adjusted criteria).

In conclusion, this test-case has demonstrated how a designer can use the inter-
active evolutionary approach to explore a large set of criteria (options) in search of
affordable and technically feasible design solutions. The ability to perform multiple
successive iterations of the interactive approach work-flow, with varying purposes (see
Figure 7.11) and the specific insights gained when using the tool are thereby of great
importance. These provide the designer with the required understanding necessary
to focus the search effort on those design criteria and concepts deemed desirable and
of real relevance to the overall design problem.

7.6 Conclusions and discussion

This chapter started by stating the main goal of the test-cases, that is, to demonstrate
how the developed interactive and progressive design space exploration approach aids
the naval architect in identifying various insights during concept exploration. Insight
which aids in both generating and selecting desired designs by giving the naval ar-
chitect the understanding necessary to identify and balance relevant design criteria.
Sections 7.4.7 and 7.5.9 have already discussed how the developed approach was suc-
cessfully used to this extent. Several more general aspects are discussed below.
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Sequential or concurrent concept exploration

Section 2.1 discussed the need to step away from sequential exploration to an approach
in which a set of designs is considered concurrently (i.e., concurrent or set-based
exploration). The developed approach and the presented test-cases shows that it is in
fact, less black-and-white. The interactive approach to concept exploration actually
combines sequential end concurrent exploration. A concurrently generated set of
designs is sequentially evolved and explored based on lessons learned and insight
gained during the exploration process. As the set of designs grows over time, the
exploration becomes more concurrent. Moreover, since the entire set of designs is
considered at each step of the exploration it is much easier to alter selections and
revert earlier decisions made.

The first test-case is a good example, here the decision making in the iterations
of the progressive process was very much sequential, that is, how to proceed in the
next iteration? However, the concurrent nature of the generation of solutions made
sure that a broad exploration took place, thereby also uncovering new interesting
designs in other regions of the design space (Section 7.4). The second test-case is
more concurrent in that respect. Once the initial set of desired affordable designs
is found the progressive method further explores each design in individually with
steering runs. Again, because we are working with set-based exploration, several new
and different designs are identified in-between iterations (Section 7.5.4).

Preliminary ship design tool characteristics

Section 1.5 listed several desirable characteristics for design tools, and their output,
if they are intended to be used for concept exploration in the preliminary ship design
stage (Andrews, 2011). These characteristics are repeated here with a discussion on
how the developed interactive approach fits each.

• Believable and coherent solutions. As discussed in Chapter 3, the Packing-
approach ship synthesis model produces a large and diverse set of technically
feasible design solutions. In addition, the test-cases show that both a numerical
and architectural description of all design solutions is readily available for use
by the naval architect.

• Open and responsive methods. A key characteristic of the interactive concept
exploration approach is its ability to adapt towards the needs of the designer
during the exploration process. The tool can be focused on any particular aspect
of the solutions which warrants more attention (e.g., considering a detailed
analysis such as in the first test-case, or a broader less detailed global analysis
as in the second test-case). As such, the interactive exploration approach is
considered to be a step forwards in more responsive methods.

• Revelatory insights. Gaining and re-using insight are a key part of the developed
approach. This insight, and the understanding it provides, guides the entire ex-
ploration process. Additionally, the broadness of the exploration coupled with
the interactive user steering has the potential of revealing interesting, often ini-
tially unexpected, results. For example: refer to the distinctly different solutions
in the first test-case; the elucidated interactions between speed, range, endur-
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ance in the second test-case; and the identification of the main driving design
options, and their interactions, also in the second test-case.

• Creative approach. First and foremost, it must be recognised that the naval
architect remains in control of the creativeness of the developed approach.
That is, in terms of the choice of design options that are integrated in the
design model (e.g., modelled system solutions, propulsion concepts). Neither
the Packing-approach synthesis model or the developed interactive approach
will automatically, without user input, create or invent new design options.
However, within the user-defined margins (e.g., model constraints or variable
ranges) the Packing-approach does combine and configure the different existing
design options into new and novel solutions.

Hence, the questions becomes: “can a computational approach which com-
bines existing elements into novel solutions be regarded as creative or inventive?”
There are numerous examples of methods applying forms of evolutionary com-
putation to combine existing elements into “creative” solutions. It is hard to
argue against the creativity of evolutionary approaches which, for instance, com-
bine existing elements into new art or music (e.g., see Gibson and Byrne, 1991;
Romero and Mechado, 2008). Nonetheless, often still human intervention in the
form of expressed preferences is required for evolution to occur. Youn et al.
(2015) reason that the term invention can also be conceptualized as a search
process over a space of combinatorial possibilities. A fact which they supported
by the finding that the majority of new patents filed in the US Patent Office
combine two or more existing technologies to invent something new.

Considering the short discussion above, and because indeed the developed
approach combines existing elements into novel solutions (i.e., within user-
defined bounds) the Packing-approach synthesis model and the developed inter-
active approach can be considered as a type of creative approach. Nonetheless,
the currently lacking ability for the designer to include new design options based
on new insight during the interactive process (see Section 4.3), does limit the
creativeness of the approach.

However, although the approach will not invent new sub-solutions and design
options (e.g., new systems or hull types), it can provide insight to the user
about what such new solutions might look like (e.g., what is needed to solve
an emerging problems?). For example, stability issues can indicate the need
for a lower weight radar system. Also, while using the MCMV model for the
test-cases, it was found that the smallest electric motor and the smallest diesel
engine (in terms of power output) were still too large for the actual required
propulsion power. Hence, designs would easily meet their required transit and
maximum speed requirements.





Chapter 8

Conclusions and
recommendations

“If our brains were simple enough for us to understand
them, we’d be so simple that we couldn’t”

– Ian Stewart

This Chapter first revisits the practical problem of preliminary ship design and the
need and challenges of early concept exploration, as introduced in Chapter 1. Next,
the proposed solution approach is described before commenting on the specific im-
plementation of the approach for concept exploration of complex (naval) ships, as
developed in this dissertation. The main conclusions which followed from the ap-
plication of the developed approach in several test-cases is then discussed. Finally,
recommendation for further research and development are made.

8.1 Revisiting the problem

Chapter 1 described the “practical” problem of preliminary ship design. That is,
searching for a set of requirements and accompanying design solutions which provide
a good balance of operational performance (effectiveness) and affordability (cost)
while safeguarding technical feasibility. To do so, requires a process of “requirements
elucidation” in which a broad exploration of the design and solution space is wanted
(Andrews, 2011).

Chapter 1 also elaborated on three challenges encountered when attempting to
perform such broad concept exploration studies for the purpose of “requirements
elucidation” at an early stage. These are:

• First, the need to generate a large and diverse set of design solutions cover-
ing a broad range of varying options, is hampered by the dimensionality of the
early stage concept exploration problem (Section 1.3.1). A problem which often
forces naval architects to make ill-considered decision regarding the focus of the
exploration (i.e., reducing the scope of the problem in order to continue the
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exploration effort), thereby potentially eliminating interesting design solutions.
Insight into the design problem would aid in making such decisions, yet gain-
ing such insight was the raison d’être of concept exploration and requirements
elucidation in the first place.

• Second, the difficulty of defining and balancing relevant design objectives (Sec-
tion 1.3.2). That is, objectives which would aid in solving part of the first chal-
lenge by allowing the naval architect to focus the exploration effort on only
those options which produce desired solutions. Simply put, the problem would
be greatly simplified if we could define what we are looking for. However, com-
plex interactions between objectives and not easily quantifiable objectives are
holding us back in doing so (e.g., they require complex detailed simulations or
are the result of subjective evaluation).

• Third, the complex nature of ship design and ships themselves, makes it difficult
to relate the design and solution space (Section 1.3.3). Not only are there endless
solution possibilities in combining a large set of varying design options, these
solutions are also constrained by multiple varying and interacting design cri-
teria for different design characteristics (i.e., technical, performance, and cost).
In addition, the often discrete nature of many ship characteristics further com-
plicates the elucidation of such interactions in search of insight. Insight which
would aid in generating, identifying, and balancing relevant design criteria.

The above challenges are interlinked. The first two challenges require each other
to resolve them. First, to overcome the dimensionality issues, relevant objectives and
design characteristics are required which can provide focus (the second challenge).
Second, to properly evaluate which objectives and design characteristics are relevant,
a diverse and broad set of design options and solutions must be generated and explored
(the first challenge). Meanwhile, the third issue (i.e., the complexity of the ship design
problem) further complicates elucidating the interactions between design options and
solutions.

The problems identified above led to the formulation of the main research question
which must be solved (Section 1.6):

How to generate and select the right design(s) using insight gained during concept
exploration?

In which, the right design, refers to the design the customer actually wants, that
is, which has a desirable balance between technical feasibility, (operational) perform-
ance, and cost. Insight, refers to understanding how the design and performance space
relate, that is, how and why the input to the process (e.g., design options, require-
ments, preferences) interacts with the output (e.g., the solutions, their performances,
and their costs). Generate, is applying insight to ensure the right design is actually
generated, and selection refers to the ability to confirm that indeed the right design
can be identified (e.g., based on a balanced set of identified criteria).
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8.2 The proposed approach

Chapter 2 concluded with the proposed approach, namely, an interactive progressive
approach to concept exploration. It integrates the three basic steps of any concept
exploration effort: (i) generating and assessing design concepts and their performance;
(ii) exploring and analysing design concepts and their criteria in search for good
performers and problem insight; and (iii) using the gained insight to select those high
performance concepts for further analysis. Through iteratively performing these steps
in an integrated and interactive process, a progressive concept exploration process is
created (e.g., see the process description in Chapter 3).

The proposed progressive exploration approach allows the user to constantly use
gained insight from exploration to adjust the criteria describing a balanced solution.
These evolving criteria are used to gradually focus the generation of new solutions
(Figure 8.1). Hence, in each iteration of the approach the following steps take place:
first a set of solutions is generated using the current set of criteria as guidance; next
these designs and the criteria are explored by the user to gain insight into the relations
between the current criteria and the found solutions; finally, this insight provides the
necessary understanding required to adjust and or expand the current criteria in
search for more relevant and balanced solutions. The implementation and application
of the proposed approach in the field of preliminary ship design is dealt with in
Section 8.3.

(0) Define
exploration inputs

(1) Define initial
design criteria

(2) Generate di-
verse set of designs

(3) Explore set of
designs and criteria

(4) Adjust
and/or expand

criteria?

(5) Select final
desired design(s)

Insight

no

yes

Figure 8.1: Proposed work-flow and process for an interactive and progressive
concept exploration approach for preliminary ship design
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8.3 Implementation of the approach

Chapter 3 discussed several issues that had to be overcome when implementing and
applying the proposed interactive approach in the in the context of preliminary ship
design and early concept exploration. The issues identified were related to: (i) the
generation of a large set of architecturally balanced design solutions covering a large
and diverse set of options; (ii) the exploration of the large set of design solutions,
their characteristics, and the criteria imposed on them, to gain insight into the design
problem; and (iii) the feedback and application of this gained insights to steer the
ship synthesis model towards more, and more relevant design solutions.

Generating a large and diverse set of designs

Section 3.4 discussed the choice for the Packing-approach architectural ship synthesis
model with which to generate a large and diverse set of design solutions within reas-
onable time. Chapter 4 gave a more detailed description of the Packing-approach and
also discussed and resolved some limitation of the approach which potentially limit
its applicability within the proposed exploration approach of this dissertation. The
issues and their developed solution are discussed below:

• The consistency of the chromosome representation (Section 4.2.1). The out-
put of the Packing-algorithm (e.g., the design and its characteristics which a
naval architects explores and judges) should match the input (e.g., what is
controlled by the search-algorithm). The Packing-algorithm changes the initial
input through overlap-management, hence there is a discrepancy between the
initial input and the final solution. This does not matter for one design solu-
tion, yet it can cause problems in the genetic algorithms evolutionary operation.
This issue was remedied by repairing the initial input (genetic algorithm chro-
mosome) to match the output of the Packing-algorithm. That is, the initial
positions of systems are repaired to match the final “as packed” positions.

• The speed of the approach (Section 4.2.2). The proposed approach relies heavily
on human interaction, hence a review of the Packing-approach model was under-
taken to find speed improvements. Section 4.2.2 presented a short comparison of
Packing-approach speeds over several versions. Both this comparison, and the
test-cases of Chapter 7, discussed and concluded that the Packing-approach is
considered fast enough for use in the interactive approach. The second test-case
demonstrated that, on average, the generation of a new set of design solutions
took about two hours1. Time during which the exploration of the previous sets
of designs can still be continued by the naval architect.

• The ability to generate designs with varying design options concurrently (Sec-
tion 4.2.3). The need to vary a broad set of design options (e.g., systems and
capability, hull-shape and size, required performance, and arrangement) was
discussed in Section 1.3.1. Hence, a MSc research study was initiated to develop
a Packing-approach design model which is capable of covering such diversity in
options (Zandstra, 2014).

1Note that this depends heavily on the complexity of the used design model, as well as the
technical specifications of the used PC.
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The developed model was indeed able to vary the required options, how-
ever, currently hull types are still limited to mono-hulls. Zandstra also found
that the increased model diversity did come at the expected cost of yield (e.g.,
relative number of feasible designs found per run of the Packing-approach).
This is related to the increased problem dimensionality. This finding further
strengthened the case for the approach developed in this dissertation. In addi-
tion, Section 4.2.4 gave a short study on the effects of the added dimensionality
on the ability to maintain a diverse set of initial solutions using the genetic
algorithm’s mutation operation.

Exploring designs and gaining insight

Section 1.3.3, 2.3 and 3.5 discussed several issues of exploring a large and diverse
number of architectural ship design solutions and their associated design criteria.
The issues and their solutions are discussed below.

• Dealing with discontinuous and non-smooth response. The response behaviour
of an architectural ship synthesis tools, such as the Packing-approach, does not
readily allow the use of analytical data analysis techniques (Section 1.3.3). Re-
gression techniques break the discrete link between the ship’s arrangement and
its numerical characteristics. Hence, the developed design exploration approach
in Chapter 5 uses the actual numerical data points, and the linked architectural
layout information. This includes a detailed 3D representation of every design
solution.

• Linking numerical and architectural information and the criteria imposed on
them (Section 2.3.2 and 5.2). These different “domains” or types of information
require a different exploration approach to maintain context and a familiar
reference frame for the user. A layered approach was developed allowing a user
to explore and filter solutions, characteristics (numerical and architectural), and
criteria in these different information domains. By applying set-based filtering
techniques, they can then be linked based on user defined criteria, which allows
the exploration of mutual interactions (see Section 5.3 to 5.5).

• Gaining insight into the complex interactions between design criteria and the
solutions (Section 2.3.2). Several data exploration techniques, tailored to the
specific problem of exploring architectural ship design solutions, were developed
to aid the designer in uncovering insight into the interactions between cri-
teria and designs. These methods include (see Chapter 5): interactive filter-
ing, dynamic criteria boundaries, interactive selection boxes, and cross-linking
between different types of information (e.g., numerical and architectural). Spe-
cific examples of how these aids were used to gain insight can be found in
Section 7.4 and 7.5.

Applying insight to guide the exploration effort

A key step in the proposed progressive approach, is the re-use of gained insight to
continue further exploration. That is, insight which is used by the naval architect
when making decisions about the set of criteria in each iteration of the approach (see
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Figure 8.1). The goal is to then use these criteria to generate more, and more relevant,
design solutions. Again, for the implementation of this step several issues had to be
resolved, they are discussed below.

• Using criteria to steer design generation. Section 6.2 discussed several methods,
and their drawback, that can steer design generation based on criteria. Mainly,
criteria should not be treated as must-have items. That is, because they are
subject to changes and might show conflicts, they should be treated as nice-
to-have properties. To this extent, an objective-based steering mechanism was
developed in Section 6.4. The developed steering mechanism allows criteria to
be used to steer the generation of new designs, without enforcing that every
single criterion should be met. Hence, when a conflict should occur, trade-off
solutions are still identified (e.g., this is illustrated in Section 6.5 and 7.4). In
addition, utility functions were added which promote the search for designs
which almost meet the criteria (Section 6.4).

The developed approaches to the three steps, (i) generating, (ii) exploring, and (iii)
steering or guiding, were combined and integrated within the proposed interactive and
progressive approach work-flow of Figure 8.1. The work-flow of the final integrated
interactive and progressive concept exploration approach is shown in Figure 8.2.

8.4 Conclusions

Section 8.1 restated the research question regarding concept exploration during the
preliminary design of complex vessels. This section considers if and how this question
has been answered. That is, “Does the developed approach allow a naval architect to
generate and select the ‘right’ design using insight gained during design exploration?”

• Broad concept exploration efforts require a concurrent (or set-based) approach
where designs are generated and evaluated in parallel. Section 7.6 discussed that
this claim is actually somewhat less black and white. The developed progress-
ive approach combines concurrent and sequential exploration, that is, a con-
currently generated set of designs is sequentially explored. Hence, the benefits
of sequentially applying lessons learned are added to the benefits of a broad
exploration through the large set of designs.

• To overcome the challenges of, (i) dimensionality, (ii) defining relevant object-
ives, and (iii) the complexity of the ship design problem (see Section 8.1), a pro-
gressive approach to exploration is required (i.e., based on a progressive decision
making framework). Chapter 2 claimed that a progressive approach combines
the essential steps of concept exploration to overcome these challenges.

1. Dimensionality. The gradually evolving set of criteria is used to focus
design generation towards relevant designs (i.e., that meet or lie close to
the criteria) by an objective-based steering mechanism. Thus, though the
dimensionality remains large, a naval architect can focus the exploration
effort towards those areas of the design space that are found interesting.
This process is demonstrated in both test-cases of Chapter 7.
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Figure 8.2: Implemented integrated work-flow of the interactive concept exploration
approach

2. Defining relevant objectives. Instead of attempting to define the object-
ives a-priori, the progressive approach gradually defines and refines the
“objective” by re-using insight gained during exploration. Hence, a well
though-through set of criteria is used to define both the exploration direc-
tion and to select designs. This aspect is illustrated in the second test-case
(Section 7.5), where gradually built up sets of criteria are used to define,
generate, and select promising candidates fitting the set budget criterion.

3. Gaining insight into complex interactions. The two test-cases of Chapter 7
demonstrated the ability to uncover insight into the complex interaction
between criteria and the design solutions. The first test-case elucidated
several interactions between a floodable length criterion and the resulting
impact on the size and layout of the resulting solutions. In the second test-
case several interactions regarding systems, budget and platform character-
istics were identified. Three example are: the interactions between transit
speed, range, and MCM operation endurance; the design impact of the
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number of USVs; and the design impact of hull material. In these cases,
the developed approach and its design exploration aids, coupled with en-
gineering judgement, aided in understanding not only that criteria interact,
but also how and why they interact.

• Generating desirable designs by re-applying gained insight. The developed ap-
proach allows the naval architect to directly and interactively re-apply insight
gained during design exploration to steer the ship synthesis model towards gen-
erating more, and more relevant, design solutions (see the results of the test-
cases in Chapter 6 and 7). Hence, in contrast to a prematurely limited explor-
ation, the approach allows a naval architect to cover a broader set of options
from the start. Filtering relevant criteria and design options as the explora-
tion progresses, and if necessary reverting earlier decisions made if new insight
requires a step-back. Both test-cases illustrated that during exploration new,
initially unexplored, design solutions were generated and identified during the
process of interactive exploration.

• Selecting desirable designs. In the approach, insight and a gradually evolved
set of well thought-trough criteria, are used to select (from a larger set) those
designs that are considered desirable (e.g., refer to the design solutions of both
test-cases). However, as discussed in Section 7.6 the selection of the “final” de-
sired design solution(s) requires additional information. That is, within the
scope of this dissertation selection of desirable designs stopped at identifying
technically feasible and affordable solutions. Their, operational performance
(or effectiveness) was not taken into consideration due to a lack of performance
measures (i.e., measures which require additional analysis to evaluate the oper-
ational merits of design characteristics such as speed, or the number and type
of combat systems).

Nonetheless, when such operational measures are available, the developed
approach should allow the incorporation of such information into the exploration
process. As such, it is also a recommendation to explore this possibility in
further work. Even so, this final selection does depend on several other aspects,
(i) who finally chooses the most desirable solution, (ii) what information is
required, and (iii) if multiple end concept are desired. For example, is it the ship
designer using the developed concept exploration approach of this dissertation,
or are multiple affordable concepts with different levels of performance presented
to the stakeholders (i.e., as is often the case in warship procurement). In the
later case, a set of concepts may be sufficient (e.g. such as was identified in the
test-case of Chapter 7). Also, assessing the merits of operational performance
may require a different analysis and value system for decision making. That is,
it requires the stakeholders to make a statement about how the merit of a more
operational performance is valued, and how it should be traded against other
performances?

Based on the discussion above, and considering the scope of the dissertation, it is
concluded that by using the developed interactive exploration approach it is indeed
possible to generate and select desirable design solutions by making use of insight
gained during the exploration process. Hence, the approach improves the ability to
perform thorough concept exploration studies during preliminary design, and thus
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facilitates better requirements elucidation in the search for balanced design solutions.

8.5 Contributions

The main contributions of the work presented in this dissertation to the field of naval
architecture and preliminary ship design are:

• Development and application of a novel interactive and steerable concept ex-
ploration tool (Chapter 3-7). The tool is based on a progressive design approach
which combines elements of a-prior and a-posteriori decision making. This al-
lows gradual decision making during the exploration process. Hence, the ex-
ploration’s focus can be changed on-the-fly while new information and insight
become available. This allows naval architects to gradually build-up a well
thought-through set of design criteria (e.g., requirements, constraints, and pref-
erences) describing a desirable balanced design solution.

• Development of an interactive flexible data exploration tool to visualise and eval-
uate results of an architectural ship synthesis model (Chapter 5). This data
exploration tool was specifically developed to help explore the complex interac-
tions between various ship characteristics and the criteria imposed on them. The
tool uses interactive data visualisation techniques (e.g., dynamic data brushing
and filtering) to aid a naval architect in uncovering insight into the interac-
tion between various ship characteristics and the criteria imposed on them. In
addition, a clear distinction between visualising predominantly numerical (e.g.,
length, beam, speed, range) or architectural characteristics (e.g., arrangement)
of a design was made which allowed the exploration of mutual interactions
between these domains, while maintaining context through a familiar reference
frame for the naval architect.

• Development of a feed-back mechanism to interactively steer the generation of
designs using an optimisation-based ship synthesis model (Chapter 6). Ship char-
acteristics and their desired criteria (as expressed and deemed relevant by the
naval architect) are used to interactively update a genetic algorithm’s object-
ive function. This interactive genetic algorithm steers the architectural ship
synthesis model towards generating more, and more relevant, design solutions,
thereby increasing the potential of uncovering new initially unexplored design
solutions.

• The application of the developed interactive concept exploration approach to a
preliminary design problem (Chapter 7). Two design test-cases where performed
to demonstrate both the use and benefits of the developed approach. Specifically
the second test-case illustrated how the approach aids a designer in generating,
exploring, and selecting a large number of desirable design alternatives.

As a closing remark, the developed approach is considered a step forwards in
concept exploration methods. That is, contrary to methods which explore with respect
to a perceived goal, it helps the naval architect to understand the decisions and path
taken towards a gradually elucidated goal. Hence, moving from the idea of “knowing
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that we got somewhere,” towards “understanding why and how we got there.” Thus,
providing a much better acceptance of there as the end results.

8.6 Future research

The following improvements to the developed approach are recommended:

• Incorporate results of operational analysis to facilitate a further balance of tech-
nical feasibility, operational performance, and cost. As discussed in Chapter 5
this will likely require a further breakdown of the types of characteristics con-
sidered during exploration. That is, (i) numerical characteristics representing
the technical feasibility and performance, (ii) architectural characteristics rep-
resenting layout and system aspects, and (iii) operational characteristics repres-
enting performances and effectiveness. This does however, add another layer of
complexity in exploring the result and gaining insight.

• The possibility of combining the approach of this dissertation with rationale
capturing techniques, such as those developed by DeNucci (2012) should be
investigated. Such an approach could not only capture the evolving criteria,
but also capture the reasoning behind the decision made by the naval archi-
tect during exploration and manipulation of the criteria. Ultimately, trade-offs
between criteria are still resolved by a decision of the naval architect, supported
by the insight gained from the approach. Better capturing and storage of this
insight, and analysis of how it influences the decisions of the naval architect,
should provide a more transparent design process. In addition, it allows lessons
learned to be re-visited for future projects.

• Chapter 6 gave a recommendation to investigate a hybrid steering of design gen-
eration. This method would combines “nice-to-have” criteria in objectives, and
“must-have” criteria as synthesis model constraints (Section 6.6). In this way,
as the exploration progresses, criteria can be gradually moved from the nice-to-
have set towards the must-have set, based on the matureness of the exploration.
This would further reduce the effort required for the synthesis model and search
algorithm to generate new designs when focussing, as the dimensionality of the
problem is gradually reduced. Naturally, it remains the responsibility of the
naval architect to ensure criteria are not pre-maturely moved from the “nice-to-
have” to the “must-have” set as this limits the broadness and diversity of the
initial exploration.

• As mentioned in Section 4.3, one of the current limitation of the Packing-
approach synthesis model used in this dissertation, is that new objects (e.g.,
systems and spaces) cannot easily be added later-on. Hence, insight gained
during exploration cannot be used to adapt the actual design model itself. How-
ever, this problem could be solved by using a similar progressive approach as
developed in this dissertation to actually gradually define and build the design
description used in Packing.

In such a way, the naval architect could gradually build-up the design model,
applying insight into interaction between newly added systems and spaces to
re-define applied constraints (packing-rules) or variable limits (e.g., limits on
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main-dimensions for instance). Such a dynamic design model would also allow
designers to investigate if traditional rules-of-thumb, which are often modelled
as constraints within design models, are restricting the possible solutions (e.g.,
as was the case with the fixed deck height in the first test-case of Chapter 7).
This is considered a step forwards towards a more responsive, creative, and
sketching-based architectural design approach as advocated by Andrews (1994,
2011) and Pawling and Andrews (2011).

• Section 4.2.4 talked about the issue of maintaining diversity of designs in the
initial generated set when the design model contains a large number of options.
Van Oers (2011b) steps away from using diversity metrics in his work, however,
considering that the new Packing design models contain a large number of dis-
crete design options (e.g., varying hull types, systems, or speeds), the use of a
metric to promote design diversity should be reconsidered. Such metric could
be implemented as a separate objective (e.g., the NSGA-II algorithm already
attempts to maximise diversity in the objective space, see Deb et al., 2002), or
even within the search algorithms’ genetic operations (e.g., as in Toffolo and
Benini, 2003; Shir et al., 2009).

• Investigate the applications of the developed approach outside the field of ship
design. Already, the Packing-approach ship synthesis model has been applied
in exploration of, for example, the top-deck arrangement for a FPSO (floating
production storage and offloading unit), see (Baudeweyn, 2014). Though, in this
study exploration was undertaken manually, the interactive approach developed
in this dissertation is seen to provide benefits here, in addition to other complex
engineering design problems with many negotiable criteria, as well.





Appendix A

MCMV packing model

Before a description of the applied MCMV packing model is given, it
must be emphasized that the MCMV model, design variations, budget,
criteria, and choices made in this dissertation do not reflect the MCMV
procurement program at DMO. Both the design model and cost model
were altered in such a way that they are realistic, yet not representative
of the ongoing MCMV design project.

2 USVs

Sensor
mast

Uptakes 2 ROMGs 
(30mm)

UAV 
deck

RHIB

UAV
hangar

Main
working

deck

Navigation
bridge

UUVX
hangar &
workshops

Figure A.1: Example of a design generated with the MCMV packing model. Several
important top-side systems are labelled.

This appendix provides a description of the MCMV packing model used in the two
test-cases of Chapter 7. The model was originally developed for the DMO by Zandstra
(2014) as part of a MSc thesis project at Delft University of Technology. Later this
model was further refined and extensively verified for internal use at DMO (Zandstra
et al., 2015). This same MCMV model is used within this dissertation, however, some
elements have been changed for reasons of confidentiality. Unfortunately, because
the core elements of the applied MCMV model of this dissertation remain equal to
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that of the DMO model, a full detailed description of its underlying calculations and
list of spaces cannot be provided. Nonetheless, this appendix provides some more
insight into the used packing-based MCMV design model and most of its underlying
assumptions and calculations.

Variations

The available and used design variations of the MCMV packing model are mentioned
in Chapter 7. They are repeated in Tables A.1-A.3, a further description of the
systems is given in subsequent sections.

Table A.1: Variations of MCM related characteristics

Name Variations (step) Number
Hull material GRP, AMS, Steel 3
Divers Yes, No 2
# Stingers 1− 2 2
# USV 0− 1− 2 3
USV type 12m -
# UUV (large) 3 -
# UUV (medium) 4 -
# ROV (disposable) 48 -
Endurance MCM operation ≥ 20 days -
Speed MCM operation 8kts -

Table A.2: Variations of platform characteristics

Name Variations (step) Number
Speed (max) 12− 18kts (+1) 7
Speed (transit) 12− 18kts (+1) 7
Range (transit) 1500− 4500nm (+500) 7
Sensor/weapon suite A (heavy), B (light) 2
UAV (rotary wing) Yes, No 2
Extra working deck Yes, No 2
Extra crew (staff) 0− 15 (+5) 4
Propulsion arrangement CODELOD, CODELAD 2

Crew model

A simple crew model, which was provided by DMO, was used to estimate the total
required crew as a function of the chosen configuration of MCM systems and the
additional sensor and weapon systems (Table A.4). Requirements for added crew
(e.g., staff capabilities) are added to the total. The precise composition of the crew
cannot be displayed for reasons of confidentiality. However, the crew composition is
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Table A.3: Variations of hull-form and deck characteristics

Name Variations (step) Number
Length 50− 110m (+0.5) 120
Beam 9− 14m cont.
Draft (design) 2− 5m cont.
Shape factor stern 0− 1 cont.
Shape factor bow 0− 1 cont.
# decks in hull 3− 4 (+1) 2
Height double bottom 1m -
Height deck 2.5m -

used in the sizing of the various spaces for the different ranks (e.g., officers cabins,
rating cabins).

Table A.4: Crew sizes for different combinations of weapons/sensor suite and MCM
capability. The choice for a small, medium, or reduced crew is dictated by the number
of USVs, the number of UAVs. If the type A (heavy) sensor and weapon system suite

is chosen then 3 extra crew members are added.

Crew Suite B (light) Suite A (heavy)
Small 36 39
Medium 43 46
Large 47 50

Systems, spaces and areas

This section provides information on the dimensions and sizing used for systems,
spaces, and areas. The mass of spaces and areas is calculated through the weight
calculation as this varies based on the location and size of the space or area within
the hull it is not mentioned in the tables below.

Crew related spaces

The main sizing of crew related spaces (i.e., accommodation, offices, mess and galley,
laundry, food-stores, medical area, and the auxiliary machinery room) are based on
the amount and composition of the crew. Most of these areas are sized based on a
minimum required floor area (m2) and one deck high (2.5m). The sizing models and
list of spaces was provided by DMO.

Propulsion plant concept and components

A schematic representation of the propulsion plant concept (CODLOD or CODLAD)
is given in Figure A.2. Figure A.3 gives an indication of how this is modelled within
an actual packed design. Its different operating modes are intended as follows:
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• Mine-hunting: Both propulsion and auxiliary power is provided by two of the
three hunting DG-sets located above the waterline (one equal extra set is added
for redundancy reasons). The propulsor are driven by the electric motors (EM)
only.

• Transit: Auxiliary power is proved by the below-deck DG-set, propulsion power
is provided by the two main diesel engines (DE). If maximum speed and transit
speed happen to be equal (through the packing model variations), then in case
of the CODLAD configuration both the electric motors (EM) and diesel engines
(DE) can provide power to the propulsor.

• Maximum speed: Auxiliary power is proved by the below-deck DG-set, propul-
sion power is provided by the two main diesel engines (DE). In case of a COD-
LAD system the electric motors (EM) and diesel engine (DE) power can be
combined to reach the required sustained maximum speed.

GB

EM

DE

GB

DE

EM

DG-set

DG-set

DG-set

DG-set

hunting

Figure A.2: Propulsion concept applied in the MCMV packing model. The DG-sets
used during mine-hunting operation are located well above the waterline for signature

reduction reasons.

The individual components of the propulsion plant concept (CODLAD/CODLOD)
are sized using several databases. These component databases are given in Tables A.5-
A.71. Components are selected solely on the basis of a required power per component
(MCR).

The required power for the auxiliary DG-set was assumed constant, whereas the
three hunting DG-sets are sized according to the required electric motor MCR and
the auxiliary electric power during mine-hunting. The gross size and weight of the
gearbox is assumed constant and hence does not vary with the chosen configuration
or selected engine sizes and rpms. Hence, a rather heavy and large gearbox from a
patrol ship was used a worst-case estimate. No specific attention was further given
to the matching of components based on rpms and delivered or consumed power.
Nonetheless, the simple propulsion plant model gives an initial estimate of the gross

1Note that notional engine types are displayed
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Uptakes

3 DG-sets
(hunting)

Bow
thruster

DG-set

2 DE
2 GB2 EM

2 CPP

Figure A.3: Example of the modelled propulsion plant in the design of Figure A.1

component and plant sizes and weights. This provides further input for modelling the
surrounding engine room spaces.

The author acknowledges that the sizing approach for this propulsion configuration
is very basic and rough, specifically when considering the DE and DG-set databases
used. Both L and V-type, as well as medium and high speed engines are contained
in the database which causes deviations in dimensions when selecting on the basis of
MCR only. Stapersma and de Vos (2015) have proposed a better method of sizing
such components based on a combination of first-principle and regression analysis.
Also, Van der Nat (1999) provides accurate sizing models for electric motors.

MCM related systems

The dimensions of the main MCM systems (e.g., USV, UUVX, and ROV systems and
their extra working-deck or hangar spaces) are given in Table A.8. The sizing of the
UUVM and ROV storage and handling hangar is based on the number of UUVMs,
the number of ROVs, their stacking height, extra handling space, and required aspect
ratio of the hangar. This object is modelled as a soft object with a minimum required
area based on the above parameters.

Table A.8: Dimensions and sizing of MCM related systems

Item Length [m] Breadth [m] Height [m] Mass [t]
USV (7m) 7 3 4.5 6
USV (12m) 12 4 4.5 10.3
UUVL (large) 5.2 0.75 0.75 1
UUVM (medium) 2 0.4 0.4 0.75
ROV (disposable) 1.3 0.4 0.4 0.04
UUVL store 7 f(#UUVL) 2.5 f(#UUVL)
MCM sonar 2 3.5 2 10.6
Decompression tank 5 3 2.5 3.4
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Table A.5: Database of notional diesel engine types used in the propulsion plant
sizing model, sorted by maximum continuous rating (MCR). Only the first four en-
gines are used and selected by the model, the others provide too much power for the

different loading profiles.

Model L [m] B [m] H [m] Mass [t] MCR [kW ]
DE 1390kW V12 4.68 2.05 3.06 10.2 1390
DE 2100kW V12 3.97 1.80 2.55 14.7 2100
DE 2800kW V16 4.58 1.87 2.83 17.9 2800
DE 3000kW L6 5.94 2.63 4.01 38.0 3000
DE 3060kW L9 4.76 1.86 2.84 25.0 3060
DE 3150kW L18 4.88 1.87 2.83 19.1 3150
DE 3360kW L6 6.16 2.36 4.17 39.0 3360
DE 3500kW L7 6.47 2.63 4.01 42.0 3500

Table A.6: Database of notional diesel generator sets used in the propulsion plant
sizing model, sorted by maximum continuous rating (MCR). Only two are actually

selected and used by the model (the 425kW and 500kW models).

Model L [m] B [m] H [m] Mass [t] MCR [kW ]
DG-set 275kW HS 4.26 1.11 2.15 3.1 275
DG-set 340kW HS 3.04 1.15 1.56 3.8 340
DG-set 425kW HS 3.04 1.15 1.56 4.1 425
DG-set 500kW HS 3.04 1.15 1.56 4.3 500
DG-set 520kW MS 3.84 1.72 2.24 13.4 520
DG-set 550kW HS 3.04 1.15 1.56 4.6 550
DG-set 650kW MS 4.39 1.72 2.24 14.0 650
DG-set 700kW MS 4.91 1.92 2.34 14.0 700

Table A.7: Database of notional electric motors used in the propulsion plant sizing
model, sorted by maximum continuous rating (MCR). These are all DC-motors for
reasons of favourable (magnetic) signatures compared to their AC counterparts. Only

the smallest two are actually selected and used by the model.

Model L [m] B [m] H [m] Mass [t] MCR [kW ]
DC EM 65rpm 1.39 1.15 1.81 4.3 150
DC EM 65rpm 1.53 1.27 2.00 5.8 200
DC EM 65rpm 1.64 1.37 2.15 7.3 250
DC EM 70rpm 2.02 1.68 2.64 13.5 500
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Sensor and weapon systems

The dimensions of the used sensor and weapon systems are shown in Table A.9. The
UAV deck and UAV hangar weight are determined through the weight calculation.

Table A.9: Dimensions and sizing of notional sensor and weapon systems

Item Length [m] Breadth [m] Height [m] Mass [t]
UAV deck 7 Beam - -
UAV hangar 5 4 2.5 -
Sensor mast (suite A) 6 6 8 25
Sensor mast (suite B) 3 3 3 13.5
ROMG (30mm) 3 3 2 1.35
ROMG (.50”) 3 3 2 0.3

(Performance) calculation models

A brief summary of the main calculation models and their associated assumptions is
provided below.

Floodable length

The permissible floodable length curve is estimated at the design draft Tdes. The
curve is determined assuming a permeability of 1 for all volumes within the hull using
the method of Herner (1939). In reality the actual permeability can be considerably
lower due to the structure and internal items.

Bulkheads are placed using this permissible floodable length reference (van Diesen,
2007). Three checks are performed to determine if the bulkhead placement is allowed:

1. The relative distance between two bulkheads should be larger than the pre-
scribed minimum delta bulkhead spacing.

2. Bulkheads are not allowed to overlap with non-dividable packing objects (van
Oers, 2011b).

3. The actual flooded length due to an assumed damage length percentage is not
allowed to exceed the calculated permissible floodable length curve (also see
Chapter 7).

If the bulkheads cannot be placed due to any of the above reasons, the required
damage length is iteratively reduced by a fixed amount until the design passes or it
becomes zero (in which case the design fails). For more information refer to (van
Diesen, 2007).

Weights and centres

The applied weight calculation is equal to that of another DMO ship design tool,
GCD2, which was developed by Takken (2008). Several aspects and assumptions of
this weight calculation are listed below:
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• The calculation is volume or area based and applies weight factors (t/m3 or
t/m2) for the different ship work breakdown structure (SWBS) groups (e.g.,
structure, propulsion, electric, command and surveillance, auxiliary, outfitting,
and armament). Different space types use different weight factors for these
groups (e.g., accommodation spaces have a lighter outfitting group than an
auxiliary space). The weight factors are derived from existing naval ships and
exclude several large pieces of equipment which are added as discrete weights
(e.g., diesel engines, generator sets, propulsors, weapon and sensor systems).

• The structural weight of a space or area (SWBS 100 group) is adjusted for its
vertical position within the hull. This compensates for the increased structural
integrity near the bottom and top of the hull that is required to create sufficient
section modulus to withstand longitudinal bending moments (i.e., at the keel
and strength deck). Hence, a space located near the keel (e.g., a bilge tank)
will have a relatively higher structural weight than a space located within the
superstructure.

• For most items the centre of gravity is assumed to coincide with the centroid
of volume (or the centroid of area for area objects such as a working-deck).
Adjustments to this assumption are made for objects types such as stores or
ammunition rooms where the payload centre of gravity is user defined (e.g., 1m
above the floor area centroid).

• The weight factors for the structure (SWBS 100 group) are also adjusted for
the length of the ship. Shorter ships tend to have a relatively heavier structural
weight.

It is further assumed that the unoccupied or void space in the packing model has
weight. A packed design with a packing density < 100% has a certain amount of
unoccupied volume within the hull and superstructure. Since the weight calculation
is volume based, this void space must be included to accurately determine the ships
weight. To illustrate, consider a loosely packed large design to a tightly packed small
design with the exact same occupied volume. If the void space is not accounted as
weight then these design would have an equal structural weight.

Furthermore, it is assumed that when a packing-based design is worked out in
more detail that the spaces and areas within the hull are re-sized by a designer to fit
within the total hull envelope (e.g., spaces will eventually become larger than their
minimum required size to “fill in the gaps”). Hence, at this stage it is assumed that
void space has a specific weight roughly equal to the average specific weight of the
other spaces.

Unfortunately, the applied SWBS weight factors cannot be displayed due to reas-
ons of confidentiality.

Resistance and powering

The resistance and powering estimation is calculated at the initial design draft (Tdes)
with matching hydrostatics assuming an even trim. Hence, it is assumed that the
required speed can always be met if the final draft is smaller than or equal to the
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design draft (T ≤ Tdes). This is safeguarded using a constraint within the Packing-
approach NSGA-II search algorithm (see Chapter 4).

Resistance curves are estimated using with an internal DMO tool that applies
a regression model based on a generalized set of RNLN model test results. Ship
resistance (R) is translated to required propulsive brake power (PB) by applying the
following calculation:

PB =
R · Vs

ηO · ηR · ηH︸ ︷︷ ︸
ηD

· ηS · ηGB︸ ︷︷ ︸
ηTRM

(A.1)

where, Vs is the speed, ηO the open water efficiency of the propulsor, ηR the relative
rotational efficiency, ηH the hull efficiency, ηS the shaft efficiency, and ηGB the gearbox
or transmission efficiency. In the MCMV packing model these are combined into a
propulsive efficiency ηD=0.65 and a transmission efficiency ηTRM=0.92. These values
are assumed constant, however in reality they will vary depending on several factors
(e.g., ship speed, displacement, hull form, propeller geometry, and shaft rpm). In
addition to the above efficiencies a (large) sea-margin of 25% is assumed.

Speed, range and fuel endurance

Within the MCMV packing model the required speed and range are given as input.
These are matched with two operational usage profiles to calculate the required fuel
capacity. These profiles are: (i) a transit, and (ii) a mission scenario (Figure A.4).

A B
dtransit

Vcruise

B C

dmission/2

Vcruise

thunting

Vhunting

Figure A.4: The two operational profiles that are used to determine the required
fuel capacity

The sailing time for the transit or mission, assuming a constant speed, is equal to:

ttransit =
dtransit
Vcruise

(A.2)

and for the mission profile:

tmission = ttrans,mission + thunting = (20 · 24)hrs (A.3)

where,

ttrans,mission =
dmission
Vcruise

(A.4)
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The total fuel weight (mf ) required for the transit profile then becomes:

mf,transit =
SFC

1 · 106
· (PB,transit + PAux) · ttransit (A.5)

where, Pb,transit is the required brake power at cruise speed in kW , SFC is chosen
as a combined specific fuel consumption of all diesel engines in gr/kWh, and PAux is
the auxiliary power required by the platform in kW . The auxiliary power is assumed
to be constant and is small compared to the brake power at cruise speed (refer to the
Propulsion plant concept system).

Note that a single SFC value is used for all engines, and that it is assumed to
be constant. In reality the SFC will change as a function of engine loading. More
accuracy could be gained by using a changing SFC per engine as a function of the
actual loading. For example, by using a fit SFC curve as a function of %MCR
(Stapersma, 1994).

The fuel weight for the mission profile becomes:

mf,mission = mf,trans,mission +mf,hunting (A.6)

where,

mf,trans,mission =
SFC

1 · 106
· (PB,trans,mission + PAux) · ttrans,mission (A.7)

and,

mf,hunting = mf,USV +
SFC

1 · 106
· (PB,hunting + PAux) · thunting (A.8)

The mf,USV is the required fuel during the hunting time for the USV systems on
board a fixed amount of fuel per day of hunting is accounted for each USV. Again a
fixed SFC is used (see the comment above).

As mentioned in Chapter 7 the two profiles may differ in required fuel capacity.
Hence, one may overrule the other in the total amount of required fuel mf,total.
If mf,transit > mf,mission then the total hunting time can be increased, thereby
increasing the total mission endurance. However, if mf,transit < mf,mission then the
transit profile range is increased.

Cost model

A weight based cost estimation model was kindly provided by DMO. It applies the
NATO ANEP-41 standard on costing. The calculation uses specific costs (e.g., e /kg,
e /kW ) for estimating the cost of the different SWBS groups of the weight calculation.
Discrete costs are added for large items where applicable (e.g., weapons and sensors).
For more information refer to the NATO ANEP-41 report (NATO, 2006).
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Impact of UAV

Figure B.1: Design and cost impact of adding a UAV system

Figure B.2: Highlighted representative designs for the UAV system impact study
(Figure B.1). No UAV (front) and with UAV and landing platform (back). Note that
the design with a UAV landing deck (aft) has the 30mm main gun positioned at the
bow as it cannot be placed aft of or forwards of the UAV deck. Hence, the different

superstructure shapes.
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Impact of combat/sensor system suite

Figure B.3: Design and cost impact of combat/sensor system suite

Figure B.4: Highlighted representative designs for the combat and sensor suite
impact study (Figure B.3). Light suite (front) and heavy (back). Note the position of
the 30mm ROMG on the bow for the vessel with a heavy suite (back), while for the
light suite (which only has one 0.50” ROMG) the weapon system is positioned just

aft of the uptakes. Hence, the different superstructure arrangements.





Appendix C

Acronyms

A list of commonly used acronyms and their explanations is provided below.

AUV Unmanned aerial vehicle
AMS Anti-magnetic steel
CODELAD Combined diesel-electric and diesel propulsion, where the

highest power output is provided by both the diesel engines and
electric motors (which are supplied with current from diesel-
generator sets) simultaneously.

CODELOD Combined diesel-electric or diesel propulsion, where the
highest power output is provided by either the electric-motors
or direct drive diesel engines (depending on the motor/engine
sizes applied).

DOE Design of experiments
GA Genetic algorithm, a type of evolutionary search algorithm

that applies a search heuristic based on natural selection (sur-
vival of the fittest).

GM Vertical distance between the centre of gravity and metacentric
height for a design. This value is a measure for the initial intact
stability of the design.

GRP Glass reinforced plastics
IEC Interactive evolutionary computation
IGA Interactive genetic algorithm, a genetic algorithm wherein user

interaction is required to evaluate fitness of the individuals.
MCM Mine counter-measures
MCMV Mine counter-measures vessel
PA Packing-approach
PAX Number of passengers
PD Packing-density, the ratio of occupied and unoccupied volume

within the hull and superstructure of a packed design.
RHIB Rigid hull inflatable boat
RNLN Royal Netherlands Navy
ROMG Remotely operated machine gun
ROV Remotely operated vehicle
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RSM Response surface model
USV Unmanned surface vehicle
UUV Unmanned underwater vehicle
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Köppen, M. and Yoshida, K. Substitute distance assignments in NSGA-II for
handling many-objective optimization problems. In Obayashi, S., Deb, K., Poloni,
C., Hiroyasu, T., and Murata, T., editors, Evolutionary Multi-Criterion
Optimization, volume 4403 of Lecture Notes in Computer Science, pages 727–741.
Springer Berlin Heidelberg, 2007.

Kumar, P. and Bauer, P. Progressive design methodology for complex engineering
systems based on multiobjective genetic algorithms and linguistic decision
making. Soft Computing - A Fusion of Foundations, Methodologies and
Applications, 13(7):649–679, 2009.

Lameijer, E., Kok, J. N., Back, T., and IJzerman, A. P. The molecule evaluator: An
interactive evolutionary algorithm for the design of drug-like molecules. J. of
Chem. Inf. Model., 46:545–552, 2006.

184



Lamerton, R. F., Cudmore, A., and Leach, I. M. Future surface combatant C1
concept phase - bounding the requirement. In Proc. 10th Int. Naval Eng. Conf.
(INEC), volume 1, pages 15–27. INEC, 2010.

Mahan, A. Naval strategy compared and contrasted with the principles and practice
of military operations on land. Little, Brown and Co., 1911. URL
http://books.google.nl/books?id=KOg3AAAAMAAJ.

Marineschepen.nl. Onderwaterbeurs in Rotterdam van start (press release about
Undersea Defence Technology UDT exhibition and conference), 2015. URL
http://marineschepen.nl/nieuws/UDT-in-Rotterdam-040615.html.

Mattson, C. A. and Messac, A. Concept selection using s-Pareto frontiers. AIAA
Journal, 41(6):1190–1198, 2003.

Mattson, C. A. and Messac, A. Pareto frontier based concept selection under
uncertainty, with visualization. OPTE: Optimization and Engineering, 6(1):
85–115, 2005.

Mavris, D. N. and DeLaurentis, D. Methodology for examining the simultaneous
impact of requirements, vehicle characteristics, and technologies on military
aircraft design. In Proc. 22nd Congress of the Int. Coun. on Aeronautical Sci.
(ICAS), pages 145.1–145.10, Harrogate, UK, 2000.

McKenney, T. A., Kemink, L. F., and Singer, D. J. Adapting to changes in design
requirements using set-based design. Naval Engineers Journal, 123(3):67–77,
2011. doi: 10.1111/j.1559-3584.2011.00331.x.

McKeown, J. Analyzing the surface warfare operational effectiveness of an offshore
patrol vessel using agent based modeling. Master’s thesis, Naval Post Graduate
School, 2012.

Meckesheimer, M., Barton, R., Simpson, T., Limayem, F., and Yannou, B.
Metamodeling of combined desicrete/continuous responses. AAIA Journal, 39
(10):1950–1959, 2001.

NATO. ANEP-41 ship costing. Technical report, NATO, 2006.

Natrella, M. NIST/SEMATECH e-Handbook of Statistical Methods.
NIST/SEMATECH, 2013. URL http://www.itl.nist.gov/div898/handbook/.

Nick, E. K. Fuzzy optimal allocation and arrangement of spaces in naval surface
ship design. PhD thesis, University of Michigan, Ann Arbor, USA, 2008.

Nieuwenhuis, J. J. Evaluating the appropriateness of product platforms for
engineered-to-order ships. PhD thesis, Delft University of Technology, 2013.

Nixon, J. N. A Systematic Process for Adaptice Concept Exploration. PhD thesis,
Georgia Institute of Technology, Atlanta, USA, 2006.

van Bruinessen, T. M. Concept generation during the design - exploration phase.
Master’s thesis, Delft University of Technology, Delft, The Netherlands, 2010.

185

http://books.google.nl/books?id=KOg3AAAAMAAJ
http://marineschepen.nl/nieuws/UDT-in-Rotterdam-040615.html
http://www.itl.nist.gov/div898/handbook/


van Diesen, M. The implementation of a bulkhead positioning routine in a
conceptual design. Bsc, Royal Netherlands Naval College, 2007.

van der Nat, C. G. J. M. A knowledge-based concept exploration model for sumbarine
design. PhD thesis, Delft University of Technology, Delft, The Netherlands, 1999.

van Oers, B. J. Designing the process and tools to design affordable warships.
Technical report, NATO-RTO-MP AVT-173 Workshop on virtual prototyping of
affordable military vehicles, Sofia, Bulgaria, 2011a.

van Oers, B. J. and Hopman, J. J. Simpler and faster: A 2.5D packing-based
approach for early stage ship design. In Proc. 11th Int. Marine Design Conf.
(IMDC), volume 1, pages 297–315, Glasgow, UK, 2012.

van Oers, B. J., Stapersma, D., and Hopman, J. J. Issues when selecting naval ship
configurations from a pareto-optimal set. In Proc. 12th AIAA/ISSMO
Multidisciplinary Analysis and Opt. Conf., Victoria, British Columbia, Canada,
September 2008.

van Oers, B. J., Stapersma, D., and Hopman, J. J. An optimisation-based space
allocation routine for the generation of feasible ship designs. Ship Technology
Research, 56:31 – 48, 2009.

van Oers, B. A packing approach for the early stage design of service vessels. PhD
thesis, Delft University of Technology, Delft, The Netherlands, 2011b.

Nordin, M. A Novel Submarine Design Method Based on Technical, Economical and
Operational Factors of Influence. PhD thesis, Chalmers University of Technology,
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