Detection of range migrating targets in compound-Gaussian clutter

Petrov, Nikita; le Chevalier, Francois; Yarovoy, Alexander

DOI
10.1109/TAES.2017.2731558

Publication date
2018

Document Version
Accepted author manuscript

Published in
IEEE Transactions on Aerospace and Electronic Systems

Citation (APA)

Important note
To cite this publication, please use the final published version (if applicable). Please check the document version above.
Detection of range migrating targets in compound-Gaussian clutter

Nikita Petrov, François Le Chevalier, Alexander Yarovsky, Fellow, IEEE

Abstract—This paper deals with the problem of coherent radar detection of fast moving targets in a high range resolution mode. In particular, we are focusing on the spiky clutter modeled as a compound Gaussian process with rapidly varying power along range. Additionally, a fast moving target of interest has a few range cells migration within the coherent processing interval. Two coherent CFAR detectors are proposed taking into account target migration and highly inhomogeneous clutter. Both detectors involve solution of a transcendental equation, carried out numerically in a few iterations. The performance evaluation is addressed by numerical simulations and it shows a significant improvement in detection of fast moving targets in inhomogeneous heavy tailed radar clutter.

Index Terms—Wideband radar, Radar detection, Doppler radar, Range migration, High range resolution, Radar clutter, K-distribution.

I. INTRODUCTION

A new generation of modern radars tends to increase range resolution capabilities for better target detection and classification. Surveillance radars are especially interested in detection of moving targets – the situation, where the advantages of radars, being the sensors capable to distinguish between stationary and moving targets, are essential.

The time on target in modern surveillance radars is typically limited due to the need of scanning a large volume of space with a finite update time of the system. This implies a short time interval available for detection in every angular sector, subject to range-velocity ambiguity removal. The classical solution involves a combination of detection in a few bursts with different pulse repetition intervals (PRI) \(T_r \) in order to resolve ambiguities, resulting in a short coherent processing interval (CPI) in each burst (4 - 16 \(T_r \)) [24]. The reduction of CPI, given other waveform parameters fixed, leads to the following drawbacks: first, lower signal to clutter ratio (SCR) as consequence of shorter integration time, which can be crucial for weak (e.g. stealth) target detection; second, the poor velocity resolution, which limits the capability of slow target detection.

On the other hand, long CPI can be used to improve target detection, but with a price of having ambiguities in narrow-band radars. Moreover, moving target observation in high range resolution mode during relatively long CPI (say 50 - 100 ms) results in range migration phenomenon. This effect is well-studied for target feature extraction (e.g. [20], [30]) and it can be efficiently compensated via Keystone [2] or Radon [38] transform. Such range-walk compensation allows to transform Doppler ambiguities present in low pulse repetition frequency (PRF) mode into the residual ambiguous sidelobes of the targets. The level of these ambiguous sidelobes is typically 6-20 dB, depending on the time-bandwidth product of transmitted pulse train [12], [25]. High resolution spectrum techniques applied to such data benefit from range migration effect resulting in ability to estimate the range-velocity map in low PRF mode unambiguously [3], [12], [31]. For weak targets of interest, a simple compensation of the range-walk can be sufficient to remove velocity ambiguities. In other words, for weak targets of interest we consider the ambiguous sidelobes to be below the clutter or noise level and not generate additional false alarms.

Wideband surveillance radars benefit from the improvement in range resolution, which results in SCR gain, at least up to meter range resolution, when each target of interest (aircraft, car, etc.) can be considered as a point scatterer. Further improvement in range resolution allows to model each target as a set of point scatterers in a few adjacent range cells [26], [33]. The detection in this case can be considered as a generalization of a point target detector, while detection of a point target depends mostly on the clutter model used [9], [11].

An increase in range resolution affects clutter characteristics as well. The Gaussian model of clutter, used in narrow-band radars, is found not applicable in the case of high range resolution, see e.g. [11], [13], [18], [32], [37]. The modern trend is to model high resolution radar clutter as a compound-Gaussian process (which belongs to the class of spherically invariant random vectors (SIRV) [11], [27], [28]) i.e. a Gaussian process with power varying from one range cell to another, but sharing the same correlation structure in slow-time [11], [36]. This representation provides a mathematical tractable tool for clutter representation and further derivation of detection algorithms.

Constant false alarm rate (CFAR) target detection in compound-Gaussian clutter attracted significant attention during the last decades. A number of studies have been carried out on point (unresolved) target detection in non-Gaussian clutter, assuming both known [19], [34] and unknown [8], [15] probability density function (PDF) of the clutter. The latter exploits very important feature of being CFAR with respect to clutter power, which is of major importance for radar applications. Moreover, for long CPI the distribution-free test has been shown to approach the performance of the optimal one, as shown in [8], [34]. The recent studies [5], [16], [28], [29] are focused on implementation of adaptive CFAR detector.
in compound-Gaussian clutter, which exploits the estimated covariance matrix (CM) of clutter. The discussion there is focused on strategies for CM estimation from the reference cells in spiky clutter and on the threshold setting for the adaptive detector. Also some studies investigate the detection of range-extended targets in compound-Gaussian clutter, e.g. [9], [14]. A comprehensive overview of detection structures for modern radars can be found in [11]. However, target migration is typically not accounted for the detection, except of a few papers considering locally-Gaussian clutter along the target range-walk [10], [39].

Consequently, the main objective of this paper is to derive a CFAR detector for the case of range-migrating point target embedded in highly heterogeneous clutter following the compound-Gaussian model and to evaluate the benefits of applying CFAR detectors to migrating targets. This paper is organized as follows. In Section II we recall the models of clutter and moving target observed by a wideband radar and exploit them to formulate the detection problem. Then, in Section III, two detectors utilizing different interpretations of compound-Gaussian clutter model are derived. The performance of the proposed techniques is studied via numerical simulations and presented in Section IV. Finally the conclusions are given in Section V.

Notations: Hereinafter we use lowercase boldface letters for vector and uppercase boldface letters for matrices. Superscripts \((\cdot)^T\) and \((\cdot)^H\) stands for matrix/vector transpose and Hermitian transpose respectively. We use notation \(|\cdot|\) for matrix determinant, vec\((\cdot)\) for matrix vectorization and \(\text{tr} (\cdot)\) for the trace of a matrix. Also, in the following we use the Heaviside step function \(- \mathbb{I}(\cdot)\), the Dirac delta function \(- \delta(\cdot)\), the Gamma function \(- \Gamma(\cdot)\) and the modified Bessel function of the second kind \(\nu - K(\cdot)\).

II. SIGNAL MODEL

To provide a mathematical formulation of the detection problem, the corresponding models of a migrating target and clutter observed by a wideband radar are revised in this section.

A. Target model

The model of a migrating point target can be given considering \(K\) adjacent range cells including the target signature during the whole CPI. The signature of a moving target observed by a wideband radar is commonly expressed after its migration effect, the corresponding models of clutter and moving target observed by a wideband radar are revised in this paper, the problem of extended target detection is not considered, thus \(\Delta_E = 1\).

Consequently, coherent detection of migrating target should be also performed on the LRRS of \(K\) range cells. Similar to the narrow-band case, the detection will be performed in fast-time/slow-time domain, so hereinafter we refer to (2) as a target signature and use \(a = \text{vec}(T^{tt})\) for its vectorized form.

B. Clutter model

As discussed in the introduction, the clutter response in each range cell \(k\) is modeled as a compound-Gaussian random vector i.e. a product of two independent variables [36]:

\[c_k = \sqrt{\tau_k} g_k. \]

(4)

where \(M \times 1\) vector \(c_k = [c_{k,0}, c_{k,1}, \ldots, c_{k,M-1}]^T\) represents the clutter response in the \(k\)-th range cell. The clutter response in the whole LRRS is given by: \(c = [c_{0,0}^T, c_{0,1}^T, \ldots, c_{K-1,0}^T]^T\). The speckle component in the \(k\)-th range cell \(g_k\) is modeled as complex multivariate Gaussian \(M\)-vector with zero mean and covariance matrix \(E(g_kg_k^H) = M\), i.e. \(g_k \sim CN(0, M)\); and \(\tau_k\) is the texture parameter in the \(k\)-th range cell. Therefore...
in each range cell clutter CM is given by $E\{c_k c_i^H\} = E_T(\tau_k) M_v$. Subscript E_T states that expectation can be taken only over slow-time, not over range.

Two models of the texture parameters τ_k have been proposed so far: independent interference model, where the textures $\tau_k, k = 0 \ldots K - 1$ are independent and identically distributed (IID) random variables; and dependent interference model, where the parameters τ_k of clutter are correlated over range [32]. The independent interference model has been used to derive Normalized Matched Filter [8], it was also exploited to infer the methods for CM structure estimation, e.g. [16]. The analysis of real data records in [32] shows its good fitness for the case when the reference cells are taken away from the cell under test (CUT) and in general for statistical analysis of high resolution radar clutter [13]. The results in [18] show that this model fits well in the case of grass vegetation ground clutter, but it is less suitable for the scene with trees and forest. The dependent interference model results in the correlation of texture parameters τ_k over range. Different models of range correlation of texture were studied in [18] and [36], resulting in the conclusion that correlation behavior is dependent on many factors: polarization, grazing angle, wind speed etc, and can be retrieved from the data. The compromise between the aforementioned two models can be obtained by clustering the clutter responses into groups of a few range cells sharing the same local power, but varying from group to group [9]. The length of the cluster can be evaluated from the average correlation interval over range, a priori.

Having defined the model of a range migrating target, we should clarify the impact of range migration effect on clutter. Phenomenologically, clutter can be interpreted as a reflection from nearly-stationary objects, which are out of interest for moving target detection. Therefore, the migration term in the model (2) can be ignored for the clutter scatterers. This assumption is used to distinguish between clutter and targets in [25].

Moreover, the clutter texture in a range cell can slowly vary in time, which is essentially important for modeling sea clutter during moderate observation time. However, for ground clutter or short CPI employed for moving target detection, this effect can be neglected, resulting in constant τ_k over the whole CPI. The latter model is commonly referred as completely correlated texture, and used to derive most detectors in compound-Gaussian clutter [34].

In this paper we focus on the independent interference model with completely correlated texture, which is considered as a trade-off between fitting high resolution real data and complexity of the model. In particular, it does not require knowledge of the texture correlation along range and slow-time, which can be difficult to estimate in real scenarios (e.g. urban areas). Independent interference model satisfies $E\{c_k c_i^H\}_{k \neq i} = 0$ and, as the result, the clutter CM in a LRRS has the block-diagonal structure:

$$M = \begin{bmatrix}
E_T(\tau_0) M_v & 0 & \cdots & 0 \\
0 & E_T(\tau_1) M_v & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & E_T(\tau_{K-1}) M_v
\end{bmatrix}$$

(C)

Problem formulation

The detection problem consists of testing the hypothesis of target presence H_1 against the clutter only hypothesis H_0:

$$y = \begin{cases}
H_0: & c_k \\
H_1: & \alpha a_k + c_k
\end{cases}$$

where $y = [y_0^T, y_1^T, \ldots, y_{K-1}^T]^T$ is the received data in the LRRS under test containing range cells $k = 0 \ldots K - 1$. In every k-th range cell the received data $y_k = [y_{kM}, \ldots, y_{(k+1)M-1}]^T$ includes an independent response of clutter c_k and possibly the target with the known steering vector $a_k = [a_{kM}, \ldots, a_{(k+1)M-1}]^T$ in this range cell, but unknown complex amplitude α, constant within CPI.

In order to obtain CFAR detector we perform the Generalized Likelihood Ratio Test (GLRT) [21]. The nearest problem to the one we try to solve is the detection of a non-migrating point target in non-Gaussian clutter. As previously stated, there are two competing models of the clutter involved in the derivations of a coherent radar detector for such interference. For radar applications it is more common to model clutter with compound-Gaussian model, where the texture is a random variable with some PDF. This approach is used e.g. in [8] to derive Normalized Matched Filter (NMF) with assumption that the structure of clutter CM M_v is known. The second approach considers a realization of the texture in the range cell under test as an additional unknown deterministic parameter (instead of a random variable). In fact, this is tantamount considering Gaussian clutter with unknown power in each range cell, but constant within CPI. As a result, the latter approach leads to the same detection structure as previously, thus NMF [15], [23]. The approximation used to derive NMF under compound-Gaussian model is fair only for large number of pulses in CPI; for small M known clutter PDF results in performance gain [34]. For a non-migrating target detection NMF is applied to a single range cell, say k_0, and it is given by:

$$\frac{|a_{k_0}^H M_v^{-1} y_{k_0}|^2}{(a_{k_0}^H M_v^{-1} a_{k_0}) |(y_{k_0}^H M_v^{-1} y_{k_0})|^2} \geq \frac{H_1}{H_0} \geq T_{NB-NMF},$$

(7)

where $a_{k_0} = [a_{k_0M}, \ldots, a_{k_0(k+1)M-1}]^T$ is the narrow-band (without migration) steering vector in the range cell k_0, derived from (2) assuming $|v_0| T_r M/\delta R \ll 1$. This model is shown in Figure 1, a.

In case of range extended target with no migration, the adjacent range cells of the target response are considered to be independent from each other. Moreover, due to the absence of range-walk, the scatterers are assumed to be present in the same range cells during the whole CPI, as shown in Figure 1, c. The decision rule then becomes a combination of the
In this section we focus on a design of CFAR detector for a migrating target in compound-Gaussian clutter using aforementioned simplification of the GLRT. Two strategies are studied: first, we consider a compound-Gaussian model, where the texture \(\tau \) is a random variable with unknown PDF. Secondly, we perform a sub-optimal approach by considering texture as an unknown parameter in GLRT, and substitute its estimation for a detector capable to deal with range migrating targets. This simplification allows us to remove \(\tau \), \(Z \) and \(M \) from the GLRT (9). The proposed detection algorithms are presented in Section III.

III. The migrating target detector

In this section we focus on a design of CFAR detector for a range migrating target in compound-Gaussian clutter using aforementioned simplification of the GLRT. Two strategies are studied: first, we consider a compound-Gaussian model, where the texture \(\tau \) is a random variable with known PDF. Secondly, we perform a sub-optimal approach by considering texture as an unknown parameter in GLRT, and substitute its estimation into the test. In fact, the second approach considers compound-Gaussian clutter as being Gaussian with unknown power in each range cell and leads to a distribution-free test, which is of practical interest.
A. Texture is a realization of random variable with known PDF

The independent interference model considered in this study allows us to represent the PDF of the data in the absence of a target \((H_0)\) in each range cell separately. The clutter, being Compound-Gaussian, follows the following PDF in every range cell [6], [36], assuming \(\mathbf{M}_\nu\) is known and satisfies \(\text{tr}\left(\mathbf{M}_\nu\right) = M\):

\[
 f_0(y_k) = E\{f_0(y_k|\tau_k)\} = \int_0^\infty \frac{1}{(\pi\tau_k)^M} \exp\left(-\frac{y_k^H\mathbf{M}_\nu^{-1}y_k}{\tau_k}\right) p_\tau(\tau_k)\,d\tau_k, \tag{10}
\]

where \(p_\tau(\tau_k)\) is the known PDF of clutter texture in \(k\)-th range cell of the LRRS under test. Due to independent interference model used, the PDF of the whole LRRS under \(H_0\) can be given as a product of the PDFs over \(K\) range cells:

\[
 f_0(y) = \prod_{k=0}^{K-1} \int_0^\infty \frac{1}{(\pi\tau_k)^M} \exp\left(-\frac{y_k^H\mathbf{M}_\nu^{-1}y_k}{\tau_k}\right) p_\tau(\tau_k)\,d\tau_k. \tag{11}
\]

Under hypothesis \(H_1\) the PDF of the LRRS under test is derived from the PDF under \(H_0\) by setting the mean value of the Gaussian form to be equal to the present signal \(x = \alpha a\), where \(a\) is known steering vector and \(\alpha\) is unknown, but constant within CPI complex amplitude of the target. The PDF of the LRRS under hypothesis of target presence \((H_1)\) is then written using the known steering vector of the target in the \(k\)-th range cell \(a_k\) as:

\[
 f_1(y; \alpha) = \prod_{k=0}^{K-1} \int_0^\infty \frac{1}{(\pi\tau_k)^M} \exp\left(-\frac{y_k^H\mathbf{M}_\nu^{-1}(y_k - \alpha a_k)}{\tau_k}\right) p_\tau(\tau_k)\,d\tau_k. \tag{12}
\]

The PDFs under both hypotheses being defined, the GLRT (9) reduces to the test:

\[
 \Lambda(y) = \frac{f_1(y; \alpha)}{f_0(y)} \overset{H_1}{\underset{H_0}{\gtrless}} T, \tag{13}
\]

where the dependence on the texture within LRRS \(\tau_k\) is removed assuming its PDF is known. On the other hand, no prior information about \(\alpha\) is available, thus it should be substituted with its maximum likelihood estimation (MLE).

Further we assume the clutter to be IID (hence compound-Gaussian), which implies equal distribution of texture along range: \(p_\tau(\tau_0) = \ldots = p_\tau(\tau_K) = \ldots = p_\tau(\tau_{K-1}) = p_\tau(\tau)\). This fact allows us to simplify the PDFs under both hypotheses (11), (12) by means of the following function [16], [32]:

\[
 h_M(x) = \int_0^\infty \tau^{-M} \exp\left(-\frac{x}{\tau}\right) p_\tau(\tau)\,d\tau, \tag{14}
\]

resulting in the following expression for PDF of the LRRS under \(H_1\):

\[
 f_1(y; \alpha) = \prod_{k=0}^{K-1} h_M\left((y_k - \alpha a_k)^H\mathbf{M}_\nu^{-1}(y_k - \alpha a_k)\right) / |\mathbf{M}_\nu|^K. \tag{15}
\]

As usually, the PDF under \(H_0\) is: \(f_0(y) = f_1(y; \alpha)|_{\alpha=0}\). The PDF of texture is included in the function \(h_M\).

Next, the PDF under \(H_1\) should be maximized over the unknown deterministic target amplitude \(\alpha\). Instead of maximization of the likelihood function, its logarithm can be maximized by taking the derivative and setting it to zero. It is done using the relation for derivative of function \(h_M(x)\):

\[
 \frac{\partial h_M(x)}{\partial x} = -h_{M+1}(x) \quad \text{and constructing the function} \quad c_M(x) = h_{M+1}(x)/h_M(x). \text{Finally, the amplitude estimation has the form:}
\]

\[
 \hat{\alpha} = \frac{\sum_{k=0}^{K-1} c_M\left((y_k - \hat{\alpha} a_k)^H\mathbf{M}_\nu^{-1}(y_k - \hat{\alpha} a_k)\right) a_k^H\mathbf{M}_\nu^{-1}a_k}{\sum_{k=0}^{K-1} c_M\left((y_k - \hat{\alpha} a_k)^H\mathbf{M}_\nu^{-1}(y_k - \hat{\alpha} a_k)\right) a_k^H\mathbf{M}_\nu^{-1}a_k}. \tag{16}
\]

Therefore in order to find \(\hat{\alpha}\) we have to solve the transcendental equation (16), which can be solved iteratively, subject to known PDF of the clutter texture \(p_\tau(\tau)\). The derived estimation of \(\hat{\alpha}\) should be substituted into GLRT

\[
 \Lambda(y) = \frac{h_M\left((y_k - \hat{\alpha} a_k)^H\mathbf{M}_\nu^{-1}(y_k - \hat{\alpha} a_k)\right)}{h_M\left(y_k^H\mathbf{M}_\nu^{-1}y_k\right)} \overset{H_1}{\underset{H_0}{\gtrless}} T, \tag{17}
\]

in order to perform detection.

Note that the functions \(c_M(x)\) and \(h_M(x)\) are identical to the ones used for clutter CM structure estimation in compound-Gaussian clutter, when the distribution of texture is known [16]. For practical application this means that estimation of \(\mathbf{M}_\nu\) and detection can be done on the same (or identical) chain.

A particular case of compound Gaussian distribution is \(K\)-distribution, used to describe high resolution radar clutter [18], [36], [37]. In this case, the texture parameter follows Gamma distribution:

\[
 p_\tau(\tau) = \frac{1}{\Gamma(\nu)} \left(\frac{\nu}{\mu}\right)^\nu \tau^{\nu-1} \exp\left(-\frac{\nu}{\mu}\tau\right) \mathbb{I}(\tau), \tag{18}
\]

where \(\mu\) and \(\nu\) are the scale and shape parameters of Gamma distribution respectively. Then the joint PDF of the LRRS can be expressed by substitution (18) into (14) and (15) and non-linear functions \(h_M(x)\) and \(c_M(x)\) can be written analytically:

\[
 h_M(x) = \frac{2\nu^{-\frac{M}{2}}}{\Gamma(\nu)} \left(\frac{\nu}{\mu}\right)^{\frac{\nu}{2}M} K_{\nu-M}\left(\sqrt{4\nu x/\mu}\right); \tag{19}
\]

\[
 c_M(x) = \sqrt{\frac{\nu}{\mu x}} K_{\nu-M-1}\left(\sqrt{4\nu x/\mu}\right).
\]

The plots of these functions involved in (16) and (17) are shown in Figure 2 for \(M = 32\) and \(\mu = 1\).

It is interesting to consider two extreme cases of \(K\)-distribution shape parameter, i.e. \(\nu \to 0\) and \(\nu \to \infty\). If \(\nu \to \infty\), then the clutter tends to Gaussian distribution with power \(p_\tau(\tau) = \delta(\tau - \mu)\), where \(\mu\) is the known mean power of clutter. By definition (14), the non-linear memoryless function \(h_M(x)\) reduces to \(h_{\infty}(x) = \mu^{-M} \exp(-x/\mu)\), which is linear
in a logarithmic scale, and, accordingly, \(c_M(x)\) degenerates to a constant: \(c_M(x) = \mu^{-1}\) (superscript of functions \(h_M\) and \(c_M\) stands for specific value of \(K\) distribution shape parameter \(\nu\)). As it can be expected, in this case, MLE of \(\hat{\alpha}\) simplifies to its form in Gaussian interference:

\[
\hat{\alpha} = \frac{\sum_{k=0}^{K-1} a_k^H M_{y}^{-1} y_k}{\sum_{k=0}^{K-1} a_k^H M_{y}^{-1} a_k} = \frac{\hat{\alpha}^H M^{-1} y}{\hat{\alpha}^H M^{-1} a},
\]

(20)

where the second equality is obtained using the model of the CM of clutter in LRRS (5) with equal values of texture parameter \(E(\tau_k) = \mu, \forall k \in K\). Straightforward simplification of the GLRT (17) by means of (20) leads to the following expression of the logarithm of GLRT:

\[
\ln \left(\hat{\Lambda}(y) \right) = \frac{|\hat{\alpha}^H M^{-1} y|^2}{\mu |\hat{\alpha}^H M^{-1} a|},
\]

(21)

which is a general form of a scale-invariant detector used in [23]. The particular case of clutter scale parameter \(\mu = 1\) then degenerates to the Matched Filter detector [21].

The other limiting case appears when \(\nu \to 0\). Gamma PDF is not defined for \(\nu \to 0\), but we expect to have an effect just opposite to the previous case, thus the PDF of the texture should have some non-informative prior. For example it can be assumed flat over all possible values of \(\tau\) bounded above by \(\tau_{\max}\): \(p_{\tau}(\tau) = (1(0) - 1(\tau_{\max})) / \tau_{\max}\), and now the upper limit of the integral in (14) is \(\tau_{\max}\). The integral (14) then can be solved by letting \(\tau_{\max} \to +\infty\) and changing the variable \(z = 1/\tau\) (see eq. 3.351.3 of [17]). The resulting non-linear functions are \(h_M(x) = \Gamma(M) x^{-M}\) and \(c_M(x) = M/x\). In this case amplitude estimation reduces to:

\[
\hat{\alpha} = \frac{\sum_{k=0}^{K-1} a_k^H M_{y}^{-1} y_k}{\sum_{k=0}^{K-1} a_k^H M_{y}^{-1} a_k} \left(y_k - a_k \right)^H M_{y}^{-1} \left(y_k - a_k \right)
\]

(22)

and the GLRT (17) has a form:

\[
\hat{\Lambda}(y) = \prod_{k=1}^{K} \left(\frac{\left(y_k - \hat{\alpha} a_k \right)^H M_{y}^{-1} \left(y_k - \hat{\alpha} a_k \right)}{\left(y_k - a_k \right)^H M_{y}^{-1} \left(y_k - a_k \right)} \right)^{-M/2} \chi^2_{M/2} \sim T. \quad H_0
\]

(23)

Note that in case of any value of \(\nu < +\infty\) (so, except of the Gaussian clutter), the estimation of \(\hat{\alpha}\), required in the GLRT, is defined by the transcendental equation, and so it has to be solved iteratively. Two limiting cases \(\nu \to 0\) and \(\nu \to \infty\) with \(\mu = 1\) are also shown in Figure 2 for comparison.

B. Texture is an unknown parameter

In many cases no knowledge about clutter texture is available, so the test can be reformulated in terms of GLRT, considering the realization of texture in each range cell as an unknown parameter. Even though substitution of unknown parameter with its estimation typically leads to a suboptimal detection strategy, the resulting detectors are often practical due to their simple implementation. Considering clutter texture as being an unknown parameter degenerates Compound-Gaussian clutter towards the Gaussian model with unknown power in each range cell [15]. For clarity in this subsection we denote local power of clutter (a realization of the texture) in the \(k\)-th range with \(\sigma_k^2\) (instead of \(\tau_k\)).

As before, we assume clutter with completely correlated texture and known structure of CM in slow-time \(M_y\), but the target migrates within a few range cells including the clutter of different (unknown) powers \(\sigma_k^2\). Under \(H_1\) target is present in the LRRS under test with known signature \(a\), its complex amplitude \(\alpha\) is constant within CPI, but unknown. Moreover, we consider independent interference model of clutter, which results in the following PDF of LRRS under \(H_1\):

\[
f_1(y; \alpha, \sigma_k^2) = \exp \left(-\sum_{k=1}^{K} \sigma_k^{-2} \left(y_k - \alpha a_k \right)^H M_{y}^{-1} \left(y_k - a_k \right) \right),
\]

(24)

and the PDF of LRRS under \(H_0\) is given by \(f_0(y; \sigma_k^2) = f_1(y; \alpha, \sigma_k^2)|_{\alpha=0}\). Under \(H_0\) the PDF of the LRRS \(f_0(y; \sigma_k^2)\) involves unknown local powers in each range cell \(\sigma_k^2\). Under \(H_1\) the PDF of LRRS in addition depends on the unknown target amplitude \(\alpha\). In these terms, the GLRT is given by:

\[
\Lambda(y) = \frac{f_1(y; \alpha, \sigma_k^2)_{H_1}}{f_0(y; \sigma_k^2)_{H_0}} < T.
\]

(25)

To derive a detector, all unknown parameters should be substituted by their MLEs. We start with MLE of local clutter power in each range cell \(\sigma_k^2\) under both hypotheses. It can be obtained by maximizing the logarithm of the likelihood functions under both hypotheses. Then the estimation of the local power of clutter in each range cell is given under \(H_1\):

\[
\hat{\sigma}_k^2 = \frac{1}{M} \left(y_k - \alpha a_k \right)^H M_{y}^{-1} \left(y_k - \alpha a_k \right), \forall k \in K.
\]

(26)

Similarly under \(H_0\): \(\hat{\sigma}_k^2 = \sigma_k^2|_{\alpha=0}\).

Using these values in the GLRT (25) it can be simplified to:

\[
\hat{\Lambda}(y) = \left(\prod_{k=0}^{K} \frac{\hat{\sigma}_k^2}{\sigma_k^2} \right)^{M/2} \chi^2_{M/2} \sim T. \quad H_1
\]

(27)

In order to find \(\alpha\), we need to maximize the logarithm of (27), which can be done by taking the derivative and setting it to zero. Finally, the amplitude estimation \(\hat{\alpha}\) is written by the transcendental equation in the form (22). Equivalent representation can be given using the local power of clutter under \(H_1\) (26):

\[
\hat{\alpha} = \frac{\sum_{k=0}^{K-1} \hat{\sigma}_k^{-2} a_k^H M_{y}^{-1} y_k \left(y_k - a_k \right)}{\sum_{k=0}^{K-1} \hat{\sigma}_k^{-2} a_k^H M_{y}^{-1} a_k}
\]

(28)

The coincidence of the results (22) and (28) (using \(\hat{\sigma}_k^2\) from (26)) can be explained as follows. The derivations for random texture can be considered as a Bayesian Neyman-Pearson detector, for which the distribution of \(\tau_k\) is given, while \(\alpha\) has a non-informative prior. Thus if we assume \(\tau_k\) to have
non-informative prior as well (see \(\nu \rightarrow 0 \) before), the detector (17) becomes equivalent to GLRT [21].

On the other hand, from (26) and (28) we can write the transcendental equation with respect to \(\hat{\sigma}_{1k}^2 \); \(\forall k \in \mathcal{K} \):

\[
\hat{\sigma}_{1k}^2 = \frac{1}{M} \left(y_k - \frac{\sum_{i=0}^{K-1} \hat{\sigma}_{i1}^{-2} a_i^H M_{\nu}^{-1} y_k / a_i^H M_{\nu}^{-1} a_k}{\sum_{i=0}^{K-1} \hat{\sigma}_{i1}^{-2} a_i^H M_{\nu}^{-1} a_i} \right)^H M_{\nu}^{-1}
\]

(29)

where the whole set of \(\hat{\sigma}_{1k}^2 \) should be updated at each iteration. Both the equation (22) and (29) have a form of a fixed point iteration and can be solved iteratively. The local convergence of the estimator (22) is proven in the Appendix.

Similarly to the approach in [16], the iterative procedure can be represented in two equations:

\[
\begin{cases}
\hat{\alpha} = \frac{\sum_{k=0}^{K-1} \hat{\sigma}_{1k}^{-2} a_k^H M_{\nu}^{-1} y_k}{\sum_{k=0}^{K-1} \hat{\sigma}_{1k}^{-2} a_k^H M_{\nu}^{-1} a_k}, \\
\hat{\sigma}_{1k}^2 = \frac{1}{M} (y_k - \hat{\alpha} a_k)^H M_{\nu}^{-1} (y_k - \hat{\alpha} a_k), \quad \forall k.
\end{cases}
\]

(30)

In this case the system should be solved using two-step person-by-person alternate maximization (AM) algorithm, similar to CM estimation in compound-Gaussian clutter [16]. The iterative algorithm at each step assumes one unknown \(\hat{\sigma}_{1k}^2 \) or \(\hat{\alpha} \) to be fixed and calculates the MLE of the other. The output of the iterative procedure should be substituted into the GLRT (27).

C. False alarm regulation

The derivations presented above constrain target velocity only with a requirement of its physical presence in the LRRS during the whole CPI. If this condition is satisfied, the detection structures presented above are independent on the target velocity. Therefore, in order to set the threshold, we can consider the particular case of non-moving and, what is more important, non-migrating target, i.e. \(\nu_0 = 0 \). The target, being a point scatterer, is thus present in one range cell, say \(k_i \), \(0 \leq k_i \leq K-1 \). In the other range cells the target signature is zero: \(a_k = 0_M, \forall k \neq k_i \). Consequently both tests (17), (27) reduce to their narrow-band counterparts and amplitude estimation can be obtained directly: \(\hat{\alpha} = a_{k_i}^H M_{\nu}^{-1} y_{k_i} / a_{k_i}^H M_{\nu}^{-1} a_{k_i} \). As a result, the test (17) has a form:

\[
\Lambda(y) = \frac{h_M \left(y_{k_i}^H M_{\nu}^{-1} y_{k_i} - \frac{|a_{k_i}^H M_{\nu}^{-1} y_{k_i}|^2}{|a_{k_i}^H M_{\nu}^{-1} a_{k_i}|} \right)}{h_M} \leq \frac{T}{h_0}.
\]

(31)

For well-behaved \(p_\tau (\tau) \) and large \(M \), which is considered herein, GLRT (31) can be replaced with:

\[
\Lambda(y) = \left(\frac{1}{1-\gamma} \right)^M = (1-\gamma)^{-M},
\]

(32)

where \(\gamma = \frac{|a_{k_i}^H M_{\nu}^{-1} y_{k_i}|^2}{(y_{k_i}^H M_{\nu}^{-1} y_{k_i} a_{k_i}^H M_{\nu}^{-1} a_{k_i})} \) [4], [32]. Note that GLRT in case of texture considered as an unknown parameter (27) reduces to the same test. Under \(H_0 \) variable \(\gamma \) follows Beta distribution with parameters \(\gamma_0 \sim \beta (1, M-1) \), for detection \(\gamma \) has to be compared with \(T\gamma = 1 - P_{FA}^{1/(M-1)} \) [8], [32].

Unfortunately, \(\gamma \) is not defined in the presence of target migration, when only iterative estimation of amplitude is available. In order to proceed further we can use the likelihood ratio transformed via monotonic function \(\psi(x) = x^{-1/M} \). Under \(H_0 \) the PDF of transformed likelihood ratio can be derived using the mirror-image symmetry of beta-distribution:

\[
(\Lambda_0(y))^{-\frac{1}{M}} = (1-\gamma_0) \sim \beta (M-1, 1),
\]

(33)

Note that because of using monotonically decreasing function \(\psi(x) \) the inequality sign for comparison \((\Lambda(y))^{-\frac{1}{M}} \) with the threshold should be changed. Obviously, the statistics \(\Lambda(y) \) is now defined for any velocity, independently on target migration, and the decision rule for \(\Lambda(y) \) can be written:

\[
\Lambda(y) \leq \frac{P_{FA}}{h_0} \frac{M}{h_0}
\]

(34)

Note that the threshold for both detectors is independent on users parameter \(K \) - the number of range cells in the LRRS.
The only restriction is that the target should be present in the LRRS under test during the whole CPI.

Implementation of an adaptive detector will require to adjust the threshold according to the CM estimation employed in the detector. However, adaptive detection in structured interference with block-diagonal CM (5) was shown to be a challenging task [10], [35]. Therefore, we leave the problem of threshold setting for an adaptive detection for the future research.

IV. PERFORMANCE ASSESSMENT

Due to iterative nature of the developed algorithms, it is not possible to derive their performance analytically. Instead, we employ Monte-Carlo simulations to evaluate the performance of the presented techniques. All the simulations within this section are done with the radar parameters given in Table I. Also, for all the simulations we exploit the true structure of CM in slow-time M_y, known a priori and identical for all the range cells within the LRRS.

An important question is the initialization of the algorithms, which can affect their performance. In particular it can influence the number of iterations required for convergence. Recall that in both cases the iterative procedure is applied to obtain an estimation of $\hat{\alpha}$ present in the scene under H_1, see (16) and (28). In this light, both algorithms should be initialized with some non-iterative estimation of $\hat{\alpha}$. As was stated before, non-iterative estimation of $\hat{\alpha}$ exists only in case of no texture variation within LRRS (locally Gaussian assumption) and it is given by: $\hat{\alpha} = a^H M^{-1} y / a^H M^{-1} a$, where $\tau_k = 1$, $\forall k \in K$. The other strategy efficient under both hypotheses would be to use for initialization in each range cell the power estimated at the previous angle scan (similar to the clutter map technique [33]), especially if the PDF of the texture is unknown a priori. Good initial estimation will result in fast convergence of the algorithm, assuming clutter power does not vary significantly from scan to scan.

In view of the foregoing we study the ability of the proposed techniques to keep P_{FA} at the designed level. In particular, the number of iterations required to perform CFAR detection is of interest. In order to check the ability of the algorithms to keep the designed P_{FA}, detection is applied to a target free scene. Therefore, we initialize both algorithms with $\hat{\alpha} = a^H M^{-1} y / a^H M^{-1} a$ and apply Alternate Maximization (AM) (27) and Maximum Likelihood (ML) (17) algorithms with a priori known PDF of clutter texture.

For the simulations herein we focus on K-distributed clutter with shape parameter $\nu = 0.5$ or, equivalently, the
exponentially distributed clutter, with known CM and white
spectrum in slow-time $M_v = I$ [7]. The ability of ML and AM
algorithms to keep the designed P_{FA} (used to set the threshold
according to (34)), is estimated from 10^3 Monte-Carlo trials
and shown in Figure 3. For each trial P_{FA} is evaluated over all
range-velocity hypotheses, thus in $K \times (MN_a)$ = 576 cells.
False alarm regulation of NMF applied to a LRRS (LRR NMF)
(8) is added for comparison to the plots. The performance of
LRR NMF shows that wrong assumption on texture variation
within LRRS results in unsatisfactory degradation of
P_{FA}. On the other hand, ML algorithm provides designed P_{FA}
already after the first iteration, given the shape parameter of
K-distribution is known. Similar result is obtained with AM
algorithm after two iterations without prior knowledge of the
clutter PDF. In practice, the PDF of clutter is unknown, but
it can be estimated from data in homogeneous environment,
resulting in a faster convergence of the detector. If a reliable
estimation of texture PDF can not be retrieved from the data
due to fast varying radar scene, such as urban environment,
AM approach provides a more attractive solution. Thus, the
choice between two algorithms should be done based on prior
knowledge of the texture and tractability of calculation the
functions $c_M(x)$ and $h_M(x)$.

The analysis presented above consider fixed clutter shape
parameter ν. Similarly to results for CM estimation [16], we
expect that the number of iterations for convergence of the
algorithms depends on clutter shape. In order to prove this
statement, the ratio of estimated P_{FA} to designed P_{FA} is
evaluated via Monte-Carlo routine for the threshold corresponding
to $P_{FA} = 10^{-3}$. Independently of clutter shape parameter
ML algorithm becomes CFAR detector after 1 iteration. At the
same time the number of iterations in AM algorithm
depends on clutter shape parameter ν, as proved by simulations
in Figure 4. The plots show that for practical values of
$\nu = 0.5 \div 10$, 2 iterations of AM algorithm are enough for
convergence. This value is used for further simulations.

The other important characteristic of CFAR is the detection
probability. Two crucial factors influence detection perform-
ance: correct model of clutter and representative model
of target motion. Incorrect model of clutter results in a
detector not satisfying CFAR property, as shown above. On
the other hand, to avoid iterative techniques, one can ignore
the migration term in target model (2) and apply NMF for
every range cell. Note that this approach preserves P_{FA} at the
designed level. For example, consider a target with $v_0 = 0.5V_a,$
(where \(V_a = c/(2f_c T_r) \) is the radar ambiguous velocity), which migrates \(\mu |_{0.5V_a} = 1.6 \) range cells during CPI. As in the previous simulations, we consider \(K \)-distributed clutter with shape parameter \(\nu = 0.5 \). In Figure 5, the detection performance of NMF applied to one range cell with narrow-band target signature (NB NMF) is compared with two proposed techniques (AM and ML) together with the clairvoyant detector. Clairvoyant detector is implemented via GLRT (25) using known values of \(\alpha \) and \(\sigma_K^2 \). The horizontal axis shows SCR after coherent integration. The detection curves of all the algorithms are obtained via Monte-Carlo routine. The results clearly show that not accounting for target migration results in severe loss in the detection performance. This loss diminishes for slow targets and increases for fast moving targets proportionally to the smearing of the target due to migration.

By the wideband assumption, a moving target migrates through a number of range cells conditional on its velocity. If the clutter texture in these range cells varies rapidly over range, a fast target will experience diverse interference within CPI. Contrary, a slow and therefore non-migrating target will be present in one range cell during the whole CPI (see Figure 1, \(a, b \)). Such an implicit averaging of the clutter texture, intrinsic for a migrating target, suggests that the detection performance of a migrating target will be velocity-dependent in inhomogeneous clutter. On the contrary, this phenomenon does not exist for non-migrating targets, where the detection performance in spectrally white clutter (or noise) does not depend on the velocity of the target. This effect is similar to performance improvement of an extended target compared to a point target [9], [14]. The major difference between the two models is that for range migrating target, its signature is summed up coherently along the range walk, while the responses of a range extended target are integrated incoherently along range.

The detection performance is studied in Figure 6 using AM algorithm with \(P_{FA} = 10^{-6} \) and wideband target signature; the horizontal axis shows SCR after coherent integration. The ML algorithm shows identical performance and therefore it is not plotted. By definition of target model, the test for a target with \(\nu = 0 \) is equivalent to NMF applied for one range cell. Note the improvement in detection of a fast target (\(v_0 = 1.5V_a \), which migrates \(\mu |_{1.5V_a} = 4.8 \) range cells) with respect to the non-migrating target is about 8 dB for clutter with shape parameter \(\nu = 0.5 \). Let us remark that the \(P_{FA} \) curves in Figure 6, corresponding to different values of clutter shape parameter,
have different SCR scale. The presented results emphasize that the detection performance depends on target velocity more in case of spiky clutter and this effect gradually vanishes as \(\nu \) increases. In the limiting case \(\nu \to +\infty \), the clutter is locally Gaussian and the detection performance does not depend on target velocity.

To emphasize the advantages of the proposed techniques with respect to the existing approaches, we estimate their performance in terms of ROC curves. In particular, we focus on a weak target scenario in highly inhomogeneous and spiky clutter. For comparison we consider all the detectors discussed above, namely: ML, AM, LRR NMF, NB NMF and the clairvoyant detector. For performance assessment we simulate a target with SCR = 0 dB after coherent integration moving with velocity \(v_0 = 0.5V_o \) or \(v_0 = 1.5V_o \) embedded in \(K \)-distributed clutter. Also, we consider two values of clutter shape parameter: \(\nu = 0.5 \) and \(\nu = 1 \). Simulation results are shown in Figure 7, each plot corresponds to a specific combination of \(\nu \) and \(v_0 \). The results show significant improvement of the proposed techniques with respect to LRR NMF and NB NMF. Note the different nature of performance degradation of these algorithms: LRR NMF suffers from the incorrect model of clutter and therefore loses CFAR property. Contrary, NB NMF keeps CFAR property, but brings significant loss in detection because of inaccurate target signature. On the other hand, the loss of the AM and ML algorithms with respect to the clairvoyant detector is negligible. The comparison of the plots with equal clutter shape parameter allows to see the benefits of a fast moving target detection over slow one in highly inhomogeneous compound-Gaussian clutter, already mentioned above.

V. CONCLUSION

In this paper we discussed the problem of fast moving target detection with wideband radar, providing range resolution of an order of 1 meter or higher. In particular, we focused on the migration effect essential for fast moving targets, observed by such radars, and exploited it to perform detection in highly inhomogeneous compound-Gaussian clutter. We proposed two detection algorithms which use iterative procedure for amplitude estimation and converges in one or two iterations for practical scenarios. Accounting for range migration results in significant (up to 8 dB) improvement for fast moving target detection for realistic spiky clutter. An additional improvement with respect to the narrow-band Doppler processing is achieved by correct migration compensation of fast moving targets. The proposed alternate maximization algorithm seems more attractive for practical application since it does not require any knowledge of clutter PDF and can be implemented on a chain identical to the one used for covariance matrix estimation in compound-Gaussian clutter.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers for their valuable comments which helped to improve the paper. Furthermore, Nikola Bogdanović, Stéphanie Bidon and Jean-Philippe Ovarlez are thanked for the fruitful discussions.

APPENDIX

Herein we prove the local convergence of the amplitude estimator (22), which is a part of proposed distribution-free detector for range migrating target in inhomogeneous environment. The iterative amplitude estimation has general form of the fixed point estimator \(\hat{\alpha}_i = g(\hat{\alpha}_{i-1}) \). The fixed point estimator converges locally at point \(\alpha_{FP} \) if the function \(g \) satisfies [1]:

\[
|g'(\alpha_{FP})| < 1 \tag{35}
\]

with \(\alpha_{FP} = \hat{\alpha}_{\infty} = g(\hat{\alpha}_{\infty}) \).

To prove this, we can write from (22):

\[
g(\alpha) = \frac{\sum_{k=0}^{K-1} n_k a_k^H M_k y_k}{\left(\sum_{k=0}^{K-1} n_k a_k^H M_k^2 a_k\right)^{\nu}} \tag{36}
\]

and take the derivative. Herein, for derivatives of complex functions we use the strategy described in [22]; especially, when taking the partial derivative over \(\alpha \), we consider \(\alpha^* \) to be a constant (the sign * states for complex conjugate). Then:

\[
n_k = n_k a_k^* - \alpha^*n_k d_k, \tag{37}
\]

\[
d_k' = d_k n_k' - \alpha^* d_k', \tag{38}
\]

and the derivative at the fixed point is:

\[
g'(\alpha_{FP}) = \frac{\sum_{k=0}^{K-1} |n_k - \alpha_{FP} d_k|^2}{\sum_{k=0}^{K-1} d_k}. \tag{39}
\]

Taking into account that \(d_k \) is a real valued function as a ratio of quadratic forms, the requirement on convergence (35) can be given by:

\[
|g'(\alpha_{FP})| = \frac{\sum_{k=0}^{K-1} |n_k - \alpha_{FP} d_k|^2}{\sum_{k=0}^{K-1} d_k} < 1. \tag{40}
\]

Inequality (40) holds, if \(\forall k \in K \), such that \(d_k > 0 \):

\[
d_k \left| \alpha_{FP} - \frac{n_k}{d_k} \right|^2 < 1. \tag{41}
\]

Note that the requirement \(d_k > 0 \) is necessary to cover the situation with non-migrating target, when at least one sub-steering vector \(a_k \) appears to be zero vector (in the range cells not including the target signature).

To proceed further we denote amplitude estimation from the data in the \(k \)-th range cell by \(\hat{\alpha}_k = n_k/d_k. \) Then, in terms of (36), the last inequality can be given by:

\[
\frac{a_k^H M_k^{-1} a_k (\alpha_{FP} - \hat{\alpha}_k)^2}{(y_k - \alpha_{FP} a_k)^H M_k^{-1} (y_k - \hat{\alpha}_k a_k)} < 1. \tag{42}
\]

After simple mathematical derivations the condition on convergence is given by:

\[
|\alpha_{FP} - \hat{\alpha}_k|^2 + \frac{y_k^H M_k^{-1} y_k}{a_k^H M_k^{-1} a_k} \left(1 - \frac{|n_k a_k^H M_k^{-1} y_k|^2}{(n_k a_k^H M_k^{-1} a_k)(y_k^H M_k^{-1} y_k)} \right) < 1, \tag{43}
\]

where the second item in the denominator is a non-negative value independent on \(\alpha \). In fact, for non-zero variance of clutter in every range cell (\(\sigma_k^2 > 0 \)), these value is positive and therefore the condition (35) is satisfied.

Q.E.D.
REFERENCES

Nikita Petrov graduated from the Baltic State Technical University "VOENMEH", Saint-Petersburg, Russia in 2012 with the engineering degree on radio-electronic control systems. His graduation project and further research activities in the scientific center "Leninets", Saint-Petersburg were focused on radar imaging with high-resolution airborne SAR systems. In 2013 he joined the Microwave Sensing, Signals and Systems group at Delft University of Technology, where he is working towards his PhD degree on signal processing techniques for moving target detection with wideband radar systems.
François Le Chevalier is Emeritus Professor at Delft University of Technology (The Netherlands), and retired Chief Scientist of Thales, Land & Air Systems.

A French pioneer in adaptive digital beamforming and STAP radar systems demonstrations, his current research activities include space-time coding for active antenna systems, and wideband unambiguous radar systems.

He has been active in- or chairing- the Technical Program Committees of most IEEE International Radar Conferences since Brest, 1999, has recently chaired the Technical Program Committee of EURAD 2012, Amsterdam, and was the Honorary Chair of SEE/IEEE International Radar Conference in France, 2014.

Alexander G. Yarovoy (FIEEE 2015) graduated from the Kharkov State University, Ukraine, in 1984 with the Diploma with honor in radiophysics and electronics. He received the Candidate Phys. & Math. Sci. and Doctor Phys. & Math. Sci. degrees in radiophysics in 1987 and 1994, respectively.

In 1987 he joined the Department of Radiophysics at the Kharkov State University as a Researcher and became a Professor there in 1997. From September 1994 through 1996 he was with Technical University of Ilmenau, Germany as a Visiting Researcher. Since 1999 he is with the Delft University of Technology, the Netherlands. Since 2009 he leads there a chair of Microwave Sensing, Systems and Signals. His main research interests are in (ultra-)wideband radar, microwave imaging and applied electromagnetics (in particular, UWB antennas). He has authored and co-authored more than 450 scientific or technical papers, four patents and fourteen book chapters. He served as a Guest Editor of five special issues of the IEEE Transactions and other journals.

He is the recipient of the European Microwave Week Radar Award for the paper that best advances the state-of-the-art in radar technology in 2001 (together with L.P. Ligthart and P. van Genderen) and in 2012 (together with T. Saveliev). In 2010 together with D. Caratelli Prof. Yarovoy got the best paper award of the Applied Computational Electromagnetic Society (ACES).

Prof. Yarovoy served as the Chair and TPC chair of the 5th European Radar Conference (EuRAD08), Amsterdam, the Netherlands, as well as the Secretary of the 1st European Radar Conference (EuRAD04), Amsterdam, the Netherlands. Prof. Yarovoy served also as the co-chair and TPC chair of the Xth International Conference on GPR (GPR2004) in Delft, the Netherlands. Since 2008 he serves as Director of the European Microwave Association (EuMA).
LIST OF FIGURES

1 Target signature of: a - a point non-migrating target; b - a point migrating target; c - an extended non-migrating target; d - an extended migrating target.

2 Weighting coefficients for different values of clutter shape ν, $M = 32$: a - $h_M(x)$, b - $c_M(x)$

3 False alarm regulation in K-distributed clutter, $\nu = 0.5$: a - Maximum Likelihood algorithm, b - Alternate Maximization algorithm

4 False alarm loss of alternate maximization algorithm vs iterations

5 Detection probability of a migrating target in K-distributed clutter with $\nu = 0.5$ using different algorithms, $v_0 = 0.5V_a$, $P_{FA} = 10^{-6}$

6 Detection probability of alternate maximization and maximum likelihood algorithms for a target with different velocity, $P_{FA} = 10^{-6}$ and clutter shape parameter a - $\nu = 0.5$; b - $\nu = 1$; c - $\nu = 10$

7 ROC curves for a target with $SCR = 0$ dB after coherent integration in K-distributed clutter: a - $v_0 = 0.5V_a$, $\nu = 0.5$; b - $v_0 = 0.5V_a$, $\nu = 1$; c - $v_0 = 1.5V_a$, $\nu = 0.5$; d - $v_0 = 1.5V_a$, $\nu = 1$.