A State-Space Approach to Modelling DC Distribution Systems

Nils H. van der Blij, Student Member, IEEE, Laura M. Ramirez-Elizondo, Member, IEEE, Matthijs T.J. Spaan, Member, IEEE, and Pavol Bauer, Senior Member, IEEE

Abstract—Many modelling methods for the analysis of dc distribution grids only consider monopolar configurations and do not allow for mutual couplings to be taken into account. The modelling method presented in this paper aims to deal with both of these issues. A state-space approach was chosen for its flexibility and computational speed. The derived approach can be applied to any dc distribution system regardless of its configuration and takes into account mutual couplings between phase conductors. Moreover, the state-space matrices can be derived in a programmatic manner. The derived model was verified empirically and by a reference model created in Simulink using PowerLib blocks. Subsequently, an illustrative system was analyzed, which showed the utility of the presented method in analyzing the dynamics of dc distribution systems. The presented method could especially be useful for the analysis, design and optimization of, for example, the stability and control systems of dc distribution systems.

Index Terms—dc distribution, distribution line, dynamic analysis, microgrid, modelling, state-space.

I. INTRODUCTION

FUTURE distribution grids face major challenges such as growing energy demand and the introduction of intermittent distributed energy sources [1]. Microgrids could provide the flexibility needed for these integration of large amounts of distributed energy sources [2]. However, for ac microgrids it is often necessary to decouple their frequency from other networks (by, for example, a solid state transformer described in [3]), which increases complexity and cost. Therefore, the adequacy of ac and/or dc for future system architectures could be reevaluated. Furthermore, technological advances and societal concerns also indicate that a reevaluation of the current distribution system is timely [4]–[7]. Broad adoption of dc distribution systems still faces several challenges, mainly due to the strong market inertia of ac systems, lack of standardization for dc devices and systems, and insufficient experience with its protection and control [8].

Previous research into dc distribution systems presents several methods to analyze these systems. Examples of modelling monopolar dc distribution grids according to their transfer functions can be found in [9]–[11]. Furthermore, different state-space approaches to the modelling of dc distribution grids are discussed in [12]–[15]. Additionally, a transient (EMTP) approach to the distribution system can be found in [16]. However, these models only consider monopolar configurations and, when extended to other configurations, do not allow for mutual couplings to be taken into account.

In this paper a non-transient state-space approach is chosen because of its computational speed, flexibility, and ease of use. The creation of a transient simulation environment optimized for dc applications is still imperative for the transient analysis of dc distribution systems. The modelling method presented in [15] allows for the programmatic derivation of the state-space matrices from a so-called incidence matrix. However, this method was designed for monopolar (single phase conductor) grids, and the derivation does not allow for mutual couplings or conductance to ground to be taken into account. In this paper this model is modified and extended so that multiple phase conductors, mutual couplings and conductance to ground can be incorporated.

The contribution of this paper paper is a flexible generalized modelling method that simplifies the analysis, design, and optimization of dc distribution systems. The developed method is flexible enough to allow for the analysis of dc distribution systems with any number of nodes, distribution lines, and phase conductors, in any configuration. The novelty of the developed method lies in that it allows for multiple phase conductors, and that mutual couplings and conductance to ground can be taken into account. Furthermore, a procedure is presented how the matrices of a distribution system can be derived programatically. Therefore, the method can be implemented in many simulation environments, and it allows for rapid analysis of different systems without the need of (re)building the model through a GUI.

The presented model is valid when the lines are much shorter than the wavelength(s) of the signals in the system. Therefore, the model can be used for any dc distribution (or transmission system) of any power rating as long as the above statement is true. Commercial simulation tools could produce similar results as the model. However, the mathematical nature of the presented model offers a significant advantage over these tools. It allows for the algebraic analysis of, for example, stability and control of dc distribution systems.

This paper is organized as follows: in Section II various modelling methods of (dc) distribution lines are reviewed. Section III presents the derivation of the developed state-space model. Section IV contains the validation of the developed model empirically and by using a simulation. Subsequently, Section V provides a dynamic analysis of an illustrative system. Lastly, in Section VI conclusions are drawn.
The limitations of (most) lumped element models lie in the neglect of propagation delays and frequency dependent effects. In general the parameters such as resistance, capacitance, conductance and inductance are assumed constant, while in reality they are frequency dependent. Moreover, it is usually assumed that changes at one side of the line are instantly discernible at the other side, while in reality there are propagation delays. Usually it is assumed that propagation delays can be neglected when the length of the distribution line is much smaller than the wavelength of the signal [18].

Since transients such as short-circuits often impose high frequencies on the system, models that include propagation delays are often called transient models. The most common transient models are based on distributed lumped element models or travelling wave models. Some specialized transient simulation environments that implement these methods exist such as PSCAD-EMTDC, EMTP, and ATP. In general transient models are more accurate than non-transients models, but are much more complex and require much more computational power and time for a simulation.

To circumvent the problem of wavelengths becoming comparable to the lengths of the distribution lines the model can be broken up into smaller pieces which individually have lengths much shorter than the wavelength of the signal. However, solving such a segmented model could quickly become time consuming depending on the required number of subsections [19].

Other models directly take the propagation delay into account in their equations. Popular examples of such models are the Bergeron model and variants on the travelling wave model [19], [20]. For the latter it is required to fit the frequency response of the model to a set of rational functions.

B. DC Distribution Line Modelling

The bipolar (three phase conductors) lumped element π equivalent circuit of a distribution line including mutual couplings is shown in Fig. 1. Usually it is assumed that propagation delays can be neglected when the length of the distribution line is much smaller than the wavelength of the signal [18].

Since transients such as short-circuits often impose high frequencies on the system, models that include propagation delays are often called transient models. The most common transient models are based on distributed lumped element models or travelling wave models. Some specialized transient simulation environments that implement these methods exist such as PSCAD-EMTDC, EMTP, and ATP. In general transient models are more accurate than non-transients models, but are much more complex and require much more computational power and time for a simulation.

To circumvent the problem of wavelengths becoming comparable to the lengths of the distribution lines the model can be broken up into smaller pieces which individually have lengths much shorter than the wavelength of the signal. However, solving such a segmented model could quickly become time consuming depending on the required number of subsections [19].

Other models directly take the propagation delay into account in their equations. Popular examples of such models are the Bergeron model and variants on the travelling wave model [19], [20]. For the latter it is required to fit the frequency response of the model to a set of rational functions.

In this paper the distribution lines are modeled in a lumped element π configuration that includes mutual couplings. An example of this model for a bipolar (three phase conductors) distribution line is shown in Fig. 1.

II. DISTRIBUTION LINE MODELS

Any dc distribution system consists of a number nodes which are interconnected by distribution lines. Often the power electronic converters, which are connected to the nodes, are modeled independently of the distribution lines. A plethora of modelling methods for distribution lines stem from the analysis of ac distribution systems. In general these methods can be subdivided into two categories; non-transient models and transient models.

A. Background: Non-Transient and Transient Models

Non-transient models often assume a lumped element representation of the distribution line. Typically the Γ, T, or π models, shown in Fig. 2, are used [17]. The lumped element models can be solved by, for example, their differential equations, transfer function, or a state-space representation. Several simulation environments exist where non-transient models of (dc) distribution lines are readily available such as MatLVDC, Simulink, Power Factory, and Modelica.

The limitations of (most) lumped element models lie in the neglect of propagation delays and frequency dependent effects. In general the parameters such as resistance, capacitance, conductance and inductance are assumed constant, while in reality they are frequency dependent. Moreover, it is usually assumed that changes at one side of the line are instantly discernible at the other side, while in reality there are propagation delays. The validity of neglecting propagation delays depends on the wavelength of the signal, which can be calculated by

\[
\lambda = \frac{c}{f \sqrt{\epsilon_r \mu_r}}, \quad (1)
\]

where \(\lambda\) is the wavelength, \(f\) is the frequency of the signal, \(c\) is the speed of light, and \(\epsilon_r\) and \(\mu_r\) are the relative permittivity and relative permeability of the distribution line respectively.
III. Universal State-Space Approach

An example of a dc distribution system is shown in Fig. 3. In general any dc distribution system can be described by its \(n \) nodes, \(l \) distribution lines and \(m \) phase conductors. In this section a state-space model is derived that can be utilized for any dc distribution system.

A. Distribution Network Model

To model the distribution system using a state-space approach the state variables must be chosen. These variables must fully describe the system, but fewer variables result in lower computation times. For this model the state variables are chosen to be the voltages at each node and the currents in each distribution line. The formulae for these voltages and currents are

\[
CU_N = \sum I_N, \tag{2}
\]

\[
LL_L = \Delta U_L, \tag{3}
\]

where \(U_N \) are the voltages at each node, \(I_N \) are the net currents flowing into each node, \(I_L \) are the currents flowing in each distribution line, \(\Delta U_L \) are the voltage drops over each distribution line’s inductance, and \(C \) and \(L \) are the matrices for the capacitance and inductance of the network respectively. Here, and for the remainder of this paper, dot notation indicates a time derivative of that variable and bold face of variables indicates that they are vectors or matrices.

The net current flowing into each node consists of the current from the connected load or source, the current from connected distribution lines, and current leaked through admittances. Similarly the voltage drop over the inductance of the distribution line relates to the voltage difference between the two connected nodes and the voltage drop over the distribution line’s resistance. Therefore, by substituting these quantities into (2) and (3) we arrive at

\[
CU_N = I_{DC} - I_{m}^T L - GU_N, \tag{4}
\]

\[
LL_L = I_{m}^T U_N - RL_L, \tag{5}
\]

where \(I_{DC} \) are the currents flowing from the connected sources and loads, \(I_{m}^T \) is the multi phase conductor incidence matrix, and \(G \) and \(R \) are the matrices for the conductance and resistance of the network respectively.

The incidence matrix depicts the interconnections between the nodes in the network while the multi phase conductor incidence matrix extends this matrix by creating a node for each phase conductor at each node of the incidence matrix. The incidence matrix and the multi phase conductor incidence matrix are given by

\[
I_m(j,i) = \begin{cases} 1 & \text{if } I_j \text{ is flowing from node } i \\ -1 & \text{if } I_j \text{ is flowing in node } i \end{cases}, \tag{6}
\]

\[
I_m((j-1)m + k, (i-1)m + k) = I_m(j,i), \tag{7}
\]

where the total number of nodes, distribution lines and phase conductors are depicted by \(n, l \), and \(m \) respectively. Moreover, one must cycle through all index combinations of nodes \((i) \), distribution lines \((j) \), and phase conductors \((k) \) to create the complete incidence matrices.

With the inverses of the capacitance and inductance matrices the state-space equations can be derived to be

\[
\dot{U}_N = C^{-1} I_{DC} - C^{-1} I_{m}^T L - C^{-1} GU_N, \tag{8}
\]

\[
\dot{I}_L = L^{-1} I_{m}^T U_N - L^{-1} RL_L. \tag{9}
\]

To solve these state-space equations they need to be molded into the form of

\[
\dot{x} = Ax + Bu, \tag{10}
\]

\[
y = Cx + Du, \tag{11}
\]

where \(x \) is the set of state variables, \(u \) is the set of input variables, \(y \) are the output variables, and \(A, B, C \) and \(D \) are the state-space matrices. The state variables and input variables for different phase conductors are grouped by node or line, and are composed as

\[
x = \begin{bmatrix} U_{1,1} & U_{1,2} & \cdots & U_{n,m} & I_{1,1} & \cdots & I_{n,m}\end{bmatrix}, \tag{12}
\]

\[
u = \begin{bmatrix} I_{DC,1,1} & I_{DC,1,2} & \cdots & I_{DC,l,m}\end{bmatrix}. \tag{13}
\]

where \(U_{i,k} \) is the voltage of the phase conductor \(k \) at node \(i \), and \(I_{DC,j,k} \) is the current flowing in phase conductor \(k \) of distribution line \(j \).

The \(A, B, C, \) and \(D \) matrices can now be derived from (8) and (9) and are given by

\[
A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}, \tag{14}
\]

\[
A_{11} = -C^{-1} G, \tag{15}
\]

\[
A_{12} = -C^{-1} I_{m}^T, \tag{16}
\]

\[
A_{21} = L^{-1} I_{m}^T, \tag{17}
\]

\[
A_{22} = -L^{-1} R, \tag{18}
\]

\[
B = \begin{bmatrix} B_{11} \\ B_{21} \end{bmatrix}, \tag{19}
\]

\[
B_{11} = C^{-1}, \tag{20}
\]

\[
B_{21} = \emptyset, \tag{21}
\]

\[
C = I, \tag{22}
\]

\[
D = \emptyset, \tag{23}
\]

where \(\emptyset \) indicates an empty matrix and \(I \) indicates an identity matrix.
The impedance and admittance matrices \(C, L, G \) and \(R \) can be formed by employing (24) to (33). Firstly, the impedance and admittance matrices of all distribution lines, including (mutual) couplings between different phase conductors, are depicted as

\[
R_{L,j} = \begin{bmatrix}
R_1 & 0 & \cdots & 0 \\
0 & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & \ddots \\
0 & \cdots & 0 & R_m
\end{bmatrix},
\]

(24)

\[
L_{L,j} = \begin{bmatrix}
L_{11} & M_{12} & \cdots & M_{1m} \\
M_{21} & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & \ddots \\
M_{m1} & \cdots & M_{(m-1)m} & L_{mm}
\end{bmatrix},
\]

(25)

\[
C_{L,j} = \begin{bmatrix}
\sum_{k=1}^{m} C_{1k} & -C_{12} & \cdots & -C_{1m} \\
-C_{21} & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & \ddots \\
-C_{m1} & \cdots & -C_{m(m-1)} & \sum_{k=1}^{m} C_{mk}
\end{bmatrix},
\]

(26)

\[
G_{L,j} = \begin{bmatrix}
\sum_{k=1}^{m} G_{1k} & -G_{12} & \cdots & -G_{1m} \\
-G_{21} & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & \ddots \\
-G_{m1} & \cdots & -G_{m(m-1)} & \sum_{k=1}^{m} G_{mk}
\end{bmatrix},
\]

(27)

where the components of \(R_{L,j}, L_{L,j}, C_{L,j} \) and \(G_{L,j} \) indicate the resistance, (mutual) inductance, capacitance and conductance between the phase conductors of each distribution line.

Since a form of \(\pi \)-model is used the capacitance and conductance matrices of each node can be found by summing half of the capacitance and conductance of each distribution line connected to it:

\[
C_{N,i} = \frac{1}{2} \sum_{j=1}^{l} C_{L,j} \ [I_{m}(j,i) \neq 0],
\]

(28)

\[
G_{N,i} = \frac{1}{2} \sum_{j=1}^{l} G_{L,j} \ [I_{m}(j,i) \neq 0].
\]

(29)

If any external capacitance or conductance (such as grounding) is added to the network these could also be incorporated in these equations.

Finally, the impedance and admittance matrices that are used in the state-space equations can be formed:

\[
R = \begin{bmatrix}
R_{L,1} & 0 & \cdots & 0 \\
0 & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & 0 \\
0 & \cdots & 0 & R_{L,l}
\end{bmatrix},
\]

(30)

\[
L = \begin{bmatrix}
L_{L,1} & 0 & \cdots & 0 \\
0 & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & 0 \\
0 & \cdots & 0 & L_{L,l}
\end{bmatrix},
\]

(31)

\[
C = \begin{bmatrix}
C_{N,1} & 0 & \cdots & 0 \\
0 & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & 0 \\
0 & \cdots & 0 & C_{N,n}
\end{bmatrix},
\]

(32)

\[
G = \begin{bmatrix}
G_{N,1} & 0 & \cdots & 0 \\
0 & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & 0 \\
0 & \cdots & 0 & G_{N,n}
\end{bmatrix}.
\]

(33)

B. Converter Model

The presented state-space method for the distribution network allows for the employment of any convenient converter model. Nonetheless, this subsection presents a simple (universal) state-space model for ac/dc, boost, and buck converters which can be implemented together with the distribution network model.

Simplified diagrams of ac/dc, boost and buck converters are shown in Fig. 4. For the ac/dc converter the q-axis of the dq-frame is assumed to be aligned with the ac voltage through a PLL. Consequently, for all converters the (d-axis) voltage across the inductor and resistor determines the current flowing in the inductor. Therefore, the current flowing in the inductor and voltage across the capacitor are calculated according to

\[
i_L = \frac{\Delta U}{L} - \frac{R}{L} i,
\]

(34)

\[
U_{dc} = \frac{K}{C} i,
\]

(35)
where i_L is the current flowing in the inductor, ΔU is the voltage across the inductor and resistor, U_{dc} is the voltage of the (secondary side) capacitor, and the factor K conserves the power across the primary and secondary side of the converter (for example, $K = U_c/U_{dc}$ for the ac/dc converter). Unfortunately, for a state-space approach the factor K needs to be linearized.

An inner control loop for the current, and an outer control loop for the voltage or power is employed. The equations for both (PI) controllers, in case the voltage is controlled, are

$$\Delta U = \frac{K_{i1}}{s} (i_L^* - i_L),$$

$$i_L^* = \frac{K_{i2}}{s} (U_{dc}^* - U_{dc}),$$

where K_{i1} and K_{i2} are the integral gains of the controllers, K_{p1} and K_{p2} are the proportional gains of the controllers, and i_L^* and U_{dc}^* are the reference values of the inductor current and capacitor voltage respectively.

To implement these controllers a state variable is required for the current controller (α) and for the voltage controller (β). The chosen equations for these state variables are

$$\dot{\alpha} = K_{i1} (i_L^* - i_L),$$

$$\dot{\beta} = K_{i2} (U_{dc}^* - U_{dc}).$$

By substituting (38) and (39) into (36) and (37) we arrive at the following equations:

$$\Delta U = \alpha - K_{p1} i_L + K_{p1} K_{p2} (U_{dc}^* - U_{dc}) + K_{p1} \beta,$$

$$i_L^* = \beta - K_{p2} U_{dc} + K_{p2} U_{dc}^*. $$

Finally, the state-space equations can be derived by substituting (40) and (41) into (34) and (35). The state-space equations for the converter are then given by

$$\begin{bmatrix} i_L^* \\ U_{dc}^* \\ \dot{\alpha} \\ \dot{\beta} \end{bmatrix} = \begin{bmatrix} i_L \\ U_{dc} \\ \alpha \\ \beta \end{bmatrix} + B \begin{bmatrix} \alpha \\ \beta \end{bmatrix},$$

$$\begin{bmatrix} i_L \\ U_{dc} \end{bmatrix} = \begin{bmatrix} i_L \\ U_{dc} \end{bmatrix} + C \begin{bmatrix} \alpha \\ \beta \end{bmatrix} + D \begin{bmatrix} \alpha \\ \beta \end{bmatrix},$$

$$A = \begin{bmatrix} \frac{-R}{L} & -K_{p1} K_{p2} & \frac{1}{L} & K_{p1} \\ \frac{K_{p1}}{L} & 0 & 0 & 0 \\ -K_{i1} & -K_{i1} K_{p2} & 0 & K_{i1} \\ 0 & -K_{i2} & 0 & 0 \end{bmatrix},$$

$$B = \begin{bmatrix} \frac{K_{p1} K_{p2}}{L} \\ 0 \\ K_{i1} K_{p2} \\ K_{i2} \end{bmatrix},$$

$$C = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix},$$

$$D = \emptyset.$$
A more quantified verification can be done when comparing the results of the state-space model and the PowerLib model. The error between the two models did not go above 10^{-11} (Volt or Ampere) for any of the state variables during any moment of the verification scenario. As a summary the mean relative error for all 18 state variables is given in Fig. 7. From this graph it can be seen that the error between the two models is negligible. Please note that the spikes in the mean relative error are caused by variables that remain close to zero throughout the simulation.

This model has comparable accuracy for other dc distribution systems (regardless of power or configuration) as long as long as the lines are much shorter than the wavelength(s) of the signals and the frequency dependent components of the impedance and admittance can be neglected.

V. SIMULATION OF A BIPOLAR DISTRIBUTION GRID

In the previous section the validity of the state-space model was verified. In this section a more complex example of a bipolar dc distribution system is modelled and investigated.

The schematic of an illustrative distribution system is shown in Fig. 9. At the node in the middle (N_1) the voltage of the distribution system is controlled, while the converters at the other nodes control their own output/input power. The incidence matrix for this network can be derived from the figure and is given by

$$I_m = \begin{bmatrix}
1 & -1 & 0 & 0 & 0 \\
1 & 0 & -1 & 0 & 0 \\
1 & 0 & 0 & -1 & 0 \\
1 & 0 & 0 & 0 & -1 \\
0 & 1 & -1 & 0 & 0 \\
0 & -1 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & -1 \\
0 & 0 & 0 & -1 & 1 \\
\end{bmatrix}.$$ \hspace{1cm} (48)

The scenario for which this distribution grid will be investigated is shown in Table II. First, the voltage will be stepped up, after which the various nodes will change their output/input power at varying times.

<table>
<thead>
<tr>
<th>t [ms]</th>
<th>$U_{dc}^* [V]$</th>
<th>$P_2^* [W]$</th>
<th>$P_3^* [W]$</th>
<th>$P_4^* [W]$</th>
<th>$P_5^* [W]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>700</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>750</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>750</td>
<td>1500</td>
<td>0</td>
<td>0</td>
<td>-1500</td>
</tr>
<tr>
<td>15</td>
<td>750</td>
<td>1500</td>
<td>-3000</td>
<td>0</td>
<td>-1500</td>
</tr>
<tr>
<td>20</td>
<td>750</td>
<td>1500</td>
<td>-3000</td>
<td>2250</td>
<td>-1500</td>
</tr>
<tr>
<td>25</td>
<td>750</td>
<td>1500</td>
<td>-3000</td>
<td>2250</td>
<td>-1500</td>
</tr>
</tbody>
</table>

The resulting voltages of the nodes and the currents in the distribution lines for the positive pole conductor are shown in Fig. 8. In the previous section it was shown that as long as no short-circuit occurs (and the system is balanced) little happens in the neutral voltages and currents. Furthermore, the negative pole quantities would, in this case, be identical but opposite in sign to the positive pole quantities.
Fig. 8. Node voltages and distribution line currents of the illustrative bipolar dc distribution grid for the given scenario.

From the voltage and current overshoot it can be seen that the inner and outer controllers of the converter are tightly tuned. Additionally, at the start of the simulation a slight transient can be observed that is caused by the conductance to ground of the distribution lines.

Since the network is connected in star with respect to the voltage regulator and is otherwise symmetrical, during the step up in voltage, the currents I_{1+} to I_{4+} are equal while the currents I_{5+} to I_{8+} are zero. Subsequently, during the symmetrical load step in N_2 and N_5 the voltages V_{1+} and V_{5+} get offset respectively, while the currents get distributed over all distribution lines other than L_2 and L_3. When at 15 ms a load is introduced in the system which is not directly compensated by an equal source, the average voltage in the distribution system drops, while the currents flowing from N_1 increase significantly. Finally, when the load is partly compensated by another source the average voltage rises again.

VI. CONCLUSION

This paper discussed the need for a novel and flexible modelling method for the dynamic analysis of dc distribution systems. Starting from previous research in modelling dc distribution systems and the comparison of different modelling methods used for ac lines, a choice for a non-transient state-space approach was made. The derived state-space approach can be applied to dc distribution systems with any number of phase conductors, nodes, and distribution lines, in any configuration. Furthermore, this model can be applied regardless of power rating and is also valid for transmission systems as long as the wavelength(s) of the signals are significantly smaller than the line lengths. Moreover, the state-space matrices of this model can be created programmatically, resulting in an easy to use method.

The model was verified using built in electrical components from PowerLib in Simulink. The PowerLib model showed strong congruency with the derived state-space model proving its validity. Moreover, the derived model behaved as expected during voltage, power, and short-circuit dynamics. Subsequently, a more complex distribution system was analyzed to showcase what the model can be used for.

In conclusion, this paper presents a flexible, accurate, and fast modeling method to analyze the dynamics of dc distribution systems. The state-space approach could in the future be used for the mathematical analysis, design, and optimization of, for example, control systems in dc distribution systems.